

Lecture Notes in Computer Science 3551
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Theo Härder Wolfgang Lehner (Eds.)

Data Management
in a Connected World

Essays Dedicated to Hartmut Wedekind
on the Occasion of His 70th Birthday

13

Volume Editors

Theo Härder
Kaiserslautern University of Technology
Department of Computer Science, AG DBIS
P.O. Box 3049, 67653 Kaiserslautern, Germany
E-mail: haerder@informatik.uni-kl.de

Wolfgang Lehner
Dresden University of Technology
Database Technology Group
Dürerstr. 26, 01307 Dresden, Germany
E-mail: lehner@inf.tu-dresden.de

Library of Congress Control Number: 2005927609

CR Subject Classification (1998): H.2, D.4.4, H.3

ISSN 0302-9743
ISBN-10 3-540-26295-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26295-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11499923 06/3142 5 4 3 2 1 0

Hartmut Wedekind

Preface

Data management systems play the most crucial role in building large application sys-
tems. Since modern applications are no longer single monolithic software blocks but
highly flexible and configurable collections of cooperative services, the data manage-
ment layer also has to adapt to these new requirements. Therefore, within recent years,
data management systems have faced a tremendous shift from the central management
of individual records in a transactional way to a platform for data integration, federa-
tion, search services, and data analysis. This book addresses these new issues in the area
of data management from multiple perspectives, in the form of individual contributions,
and it outlines future challenges in the context of data management. These contributions
are dedicated to Prof. em. Dr. Dr.-Ing. E. h. Hartmut Wedekind on the occasion of his
70th birthday, and were (co-)authored by some of his academic descendants.

Prof. Wedekind is one of the most prominent figures of the database management
community in Germany, and he enjoys an excellent international reputation as well.
Over the last 35 years he greatly contributed to making relational database technology
a success. As far back as the early 1970s, he covered—as the first author in Germany—
the state of the art concerning the relational model and related issues in two widely used
textbooks “Datenbanksysteme I” and “Datenbanksysteme II”. Without him, the idea of
modeling complex-structured real-world scenarios in a relational way would be far less
developed by now. Among Prof. Wedekind’s academic achievements is the develop-
ment of an alternative way for schema design based on the adaptation of the structure
of natural languages in combination with the concept of abstraction. With the relational
background in mind, he may be called the father of the language-based schema design
approach, which is still feasible in tackling complicated schema design issues. He has
covered this broad body of knowledge in eight textbooks so far, many of which have
appeared in several editions and reprints.

The impact of Prof. Wedekind’s work, however, reaches beyond pushing the rela-
tional idea (better: fighting an almost religious war at a time when data management
systems were dogmatically based on hierarchical or network data models). As a found-
ing member of the Gesellschaft für Informatik e.V. (German Association for Computer
Science) in 1969, he greatly contributed to the overall development of computer science
as a science in Germany. Even more impressive, and not directly visible through publi-
cations, official posts, etc., is the person of Prof. Wedekind. His sharp and brilliant mind
in combination with a generally open-minded character is simply fascinating. As a spe-
cial guest at a database conference in 1998 in Capri, he was introduced with the words
“Mr. Wedekind is always concerned about the WHY behind the HOW”—a very appro-
priate description.

VIII Preface

Following one of his citations, “Etwas verstehen heißt verstehen, wie es geworden
ist” (Prof. Schnädelbach: “Something to understand means to understand how it has
evolved”), it is advisable to say a few words about Hartmut Wedekind’s vita.
Prof. Wedekind was born in 1935 in Bochum, Germany. In 1955, he began his studies
in industrial engineering (‘Wirtschaftsingenieurwesen’) with a strong emphasis on me-
chanical engineering (‘Fachrichtung Maschinenbau’) at the Darmstadt University of
Technology. After finishing his diploma in Darmstadt, he ventured out (1961/62) and
earned his Master of Science in Engineering, emphasis on Operations Research, at the
University of Berkeley, advised by George B. Dantzig. Back in Darmstadt, he finished
his PhD thesis (Dr. rer. pol.) in 1963. Thereafter, Dr. Wedekind joined IBM in Sindel-
fingen and Frankfurt, where he was involved in application design and programming
based on the IBM 1401/1440. Out of IBM, he earned the Venia Legendi through his ha-
bilitation, advised by Prof. Bussmann and Prof. Heinhold, 1967. One year later, he ac-
cepted a position as professor (for Business Studies) at the TU Darmstadt, where he in-
itiated the now renowned Computer Science Department and became its first dean. Dur-
ing a stay at the IBM Research Lab in San Jose as a visiting scientist in 1972, he worked
with Edgar F. Codd. The first ideas of the relational data model were discussed at that
time. As he himself points out, it dawned on him that the relational idea was of funda-
mental importance and implied a revolution in storing and querying data sets—this was
a terrific time! ... years before the notion of transaction was born.

In 1979, Prof. Wedekind changed his affiliation and moved to the University of Er-
langen-Nuremberg, where he established a new data management group. His successful
work is documented in numerous publications. Moreover, he managed a special re-
search program (Sonderforschungsbereich) funded by the German Research Council
for 12 years from 1987–1998. He officially stepped down from leading the database
group in Erlangen in 2002. In recent years, he has spent even more time in elaborating
the foundations of computer science from a philosophy-of-science point of view, and
has presented important topics like abstraction, objects and metalanguage, or schemas
and instances in academic lectures. He has advocated that these topics are essential for
the field, although they are in general not treated in classical computer science courses
and in lectures in other sciences that depend upon computer science. Furthermore, he is
devoted to computer science education in schools, laying the foundations for the next-
generation computer scientists. Nevertheless, he is currently still teaching at three dif-
ferent universities (Friedrich Alexander University of Erlangen-Nuremberg, Darmstadt
University of Technology, and Friedrich Schiller University of Jena) and publishing pa-
pers in national as well as international journals and periodicals.

In more than 30 academic years, he has “produced” a large number of PhDs (see the
pedigree of academic descendants below and in the appendix). As can be seen, his fam-
ily is already in its fourth generation and the spirit of Prof. Wedekind—take nothing for
granted, think around the corner, and always look behind the scenes—is propagated to
all his academic descendants.

To honor Prof. Wedekind’s work in general and his 70th birthday specifically, we
organized an international symposium held from June 30th to July 2nd, 2005 at the In-
ternational Conference and Research Center for Computer Science, Schloss Dagstuhl.
All contributions covered by the book were presented by their authors.

Preface IX

Structure of the Book

This book is logically divided into four parts, which are introduced briefly along with
their associated articles.

Part I: Motivation and Modeling Issues
The first part of the book discusses the general perspective of the central role of data-
bases in a modern information society. The contribution

Databases: The Integrative Force in Cyberspace,
authored by Andreas Reuter, demonstrates the shift of database technology from a cen-
tral repository to a platform for transparent integration and efficient analysis of different
heterogeneous data sources. Different classes of data are introduced, technological
trends are explained, and a shape of future database systems is outlined. The general in-
troduction is followed by an article written by Bernhard Mitschang—one of the first
grandchildren of Prof. Wedekind—and his group. This discussion,

Federating Location-Based Data Services,
outlines the impact of location awareness on data management services in ubiquitous
computing environments. Using the Nexus platform as an example, they point out the
different requirements and characteristics for creating a federated data service. Differ-
ent architectural approaches like LAV and GAV are analyzed in this context. The third
piece in this part,

An Agent-Based Approach to Correctness in Databases,
was contributed by Herbert Stoyan and his group and discusses the approach of using
agent technology to detect semantic inconsistencies, as an illustrative example referring
to a database with genealogical data on historic persons belonging to European nobility.

Part II: Infrastructural Services
The second part of this Festschrift volume covers contributions with a focus on infra-
structural services. The introductory essay reviews the history of server technology over
the last 30 years. The article

Thirty Years of Server Technology—From Transaction Processing to Web Services,
penned by Klaus Meyer-Wegener, outlines how (application) server technology devel-
oped in recent decades and argues about current trends and future requirements. This
overview is followed by a discussion of the various forms of caching in the Internet.
Caching—in the sense of weak database replication—is a necessity for distributed ap-
plications within a totally connected world.

Caching over the Entire User-to-Data Path in the Internet,
authored by Theo Härder, underlines the need for caching Web objects in different
proxy caches in the client-to-server path and explains how database caching based on
cache constraints enables declarative query processing close to application servers,
thereby speeding up the server-to-database path. This contribution is followed by two
reports addressing the concept of messaging and notification services. The first of these
two,

X Preface

Reweaving the Tapestry: Integrating Database and Messaging Systems
in the Wake of New Middleware Technologies,

contributed by the working group of Berthold Reinwald at the IBM Almaden Research
Center in San Jose, outlines the issue of adding messaging services to the query-based
interaction model of classical database systems. This evolutionary approach is comple-
mented by an almost revolutionary approach of building notification systems by ex-
ploiting existing database technology, as described in

Data Management Support for Notification Services,
by Wolfgang Lehner. The infrastructural part closes with a discussion on extending
search capabilities in database systems to better support applications like full text
search, Web page indexing, etc. The final piece,

Search Support in Data Management Systems,
by Andreas Henrich, outlines the requirements and presents the current state of the art
concerning search methods.

Part III: Application Design
The third part of this book focuses on multiple facets of designing large applications.
Application design from the proposed perspective falls into the category of “Program-
ming in the Large,” which was always a main focus of Hartmut Wedekind’s academic
work. The first article, entitled

Toward Automated Large-Scale Information Integration and Discovery,
and authored once again by the group of Berthold Reinwald, considers the problem of
information integration as a single step towards a more global enterprise application in-
tegration. A more conceptual discussion on how to build large applications for a specif-
ic class of information systems is described in

Component-Based Application Architecture for Enterprise Information Systems,
by Erich Ortner. In a first step, this analysis explores the characteristics of the general
component concept, followed in a second step by a discussion of tools and appropriate
design methodologies to build enterprise-scale applications. The third contribution re-
views the notion of workflows from a general perspective. In

Processes, Workflows, Web Service Flows: A Reconstruction,
Stefan Jablonski discusses the history and future developments of the area of workflow
management systems and introduces a general model to specify business processes. The
same area is addressed in the discussion of distributed execution of workflows in

Pros and Cons of Distributed Workflow Execution Algorithms,
penned by Hans Schuster. His paper states the problem and compares state-of-the-art
techniques in this context. He also pinpoints major drawbacks and proposes adequate
solutions. The section on application design is rounded out by

Business-to-Business Integration Technology,
written by Christoph Bussler, where he sketches the major issues in this area and dis-
cusses database extensions in order to fulfil the requirement of being an integrative plat-
form even for cross-organizational, i.e., business-to-business processes.

Preface XI

Part IV: Application Scenarios
The final part of this book is dedicated to application scenarios with a strong emphasis
on data management issues. The first two contributions exhibit a financial background.
In

Information Dissemination in Modern Banking Applications,
authored by Peter Peinl and Uta Störl, an FX Trading application is used as an example
to demonstrate real requirements with respect to state-of-the-art data management plat-
forms. While this article focuses on the structural perspective, the following contribu-
tion,

An Intermediate Information System Forms Mutual Trust,
written by Dieter Steinbauer, outlines the process including the underlying information
system necessary to decide on granting a credit to a customer within the SCHUFA en-
vironment. The next article, entitled

Data Refinement in a Market Research Applications’ Data Production Process,
illustrates the data production process within the data-warehouse environment of GfK
Marketing Services. The most distinctive feature of the application is that data are treat-
ed like industrial goods, i.e., highly customized data products are designed for individ-
ual customers; Thomas Ruf and Thomas Kirsche have written this illustrative report.
The third application context covered within this series of application-oriented articles
is devoted to health care. In

Information Management in Distributed Healthcare Networks,
Richard Lenz discusses the specific requirements of information management in such
contexts and outlines major challenges and some solutions. The last but definitely not
least contribution comes from Hans-Peter Steiert and has the title

Data Management for Engineering Applications.
In his analysis, the integration of data and processes in the engineering application area
is discussed at different levels. Furthermore, soft factors of the integration problem,
such as dependability management and data flow integration using patterns, are includ-
ed in his considerations.

To summarize, this book provides a comprehensive overview of the state of the art
and future trends in technology and applications centered around data management is-
sues.

Kaiserslautern/Dresden
May 2005

Theo Härder and Wolfgang Lehner

XII Preface

Härder
1975

Bauer
2002

Albrecht, J.
2001

Clüsserath
1972

Eberlein
1983

Haag
1981

Hümmer
2004

Kirsche
1994

Lenz
1997

Albrecht, W.
1974

Bastian
1972

Dittmann
1977

Günzel
2001

Jablonski
1989

Kratzer
1986

Klausner
2001

Heinl
1999

Bussler
1997

Horn
2003

Neeb
2001

Meiler
2005

Petrov
2005

Schlundt
2004

Lührser
1996

Nau
1990

Reinwald
1993

Schön
1987

Schuster
1997

Steinbauer
1993

Tielemann
1990

Ortner
1982

Hofmann
1990

Wedekind
1963

Hellmuth
1997

Britzel-

1998

Lehmann
1998

Albers
1995

Schieber
1998

Stahlinger
1996

Maier
1999

Xiao
2003

Stein
1998

Schlesinger
2004

Lehner
1998

Petzold
1970

Guthör
1996

Duppel
1991

Jian
1987

Pollak
1999

Schiele
1991

Wächter
1996

Wörner
1996

Zink
2000

Garidis
1990

Han
1991

Röhrle
1994

Schneider
2003

Walter
1985

Zeller
1991

Winckler
1994

Reuter
1981

Becker
1995

Liebelt
1991

Ley
1993

Maier
1992

Ruttgers
1997

Ludwig
1992

Leue
1992

Beckstein
1988

maier

Pedigree of
Academic Descendents

Kreuz-
berger
1969

Schien-
mann
1997

Scham-
burger
2001

Thal-
heimer
1997

Zörntlein
1987

Osswald
1972

Nagler
1992

Ruf
1991

Schott-

1996
Schreier

1989
Sommer

1993
Teschke

1999
Lotter
1998

müller

Gehlen
1992

Hoff
2002

Benz-
schawel

1995
Karjoth

1987

Preface XIII

Chen
1995

Bon
2004

Effelsberg
1981

Flehmig
2005

Herbst
1996

Hübel
1992

Kovse
2005

Loeser
2000

Marder
2002

Mattos
1989

Brayner
1999

Deßloch
1993

Gesmann
1997

Hergula
2003

Käfer
1992

Mahnke
2004

Marek
1995

de Ferreira
Rezende

1997

Hüsemann
2002

Störl
1999

Berthold
2002

Böhm
1999

Hegel
1995

Krasser
1992

Bruns
1994

Schulze
1999

Peinl
1986

Nink
1999

Reinert
1996

Ritter
1997

Schöning
1992

Sutter
1992

Thomas
1996

Zhang, N.
2000

Meyer-
Wegener

1986
Küspert

1985

Härder
1975

Jaedicke
1999

Frank
2002

Kosch
1997

Rantzau
2004

Schwarz
2002

Mariucci
2004

Saltenis
2001

Sellentin
1999

Schaar-
schmidt

1999

Fischer
1997

Denda
2004

Hofmann
1993

Keller
1996

Kuhmünch
2001

Lienhart
1998

Mauve
2000

Pfeiffer
1999

Vogel
2004

Fischer
1996

Geyer
1999

Holfelder
1998

Kühne
2002

Lamparter
1994

Weis
2000

Schremmer
2002

Meyer-
Boudnik

1994
Mayer
1993

Effelsberg
1981

Bär
1993

Widmer
2003

Hilt
2001

Hellbrück
2004

Walther
2004

Melnikj
2004

Müller
2002

Baum-
garten
1999

Käcken-
hoff
1995

Zhang, W.
2002

Yan
1991

Steiert
2001

Sauter
1998

Sikeler
1989

Reuter
1981

Mitschang
1988

Pappe
1990

Rahm
1988

Schwen-
kreis
2001

Haensel-
mann
2004

Table of Content

PART I MOTIVATION AND MODELING ISSUES

Databases: The Integrative Force in Cyberspace...3
(Andreas Reuter)
1 Introduction .. 4
2 New Data Sources, New Usage Patterns.. 5
3 Technological Trends... 11
4 The Shape of Future Database Systems ... 14
5 Conclusions .. 15

Federating Location-Based Data Services...17
(Bernhard Mitschang, Daniela Nicklas, Matthias Grossmann,
 Thomas Schwarz, Nicola Hönle)
1 Introduction .. 17
2 On Location-Based Data .. 19
3 Classification of Data Services .. 21
4 Federation Issues .. 24
5 Nexus — A Service-Oriented Architecture ... 28
6 Conclusion.. 31
7 Acknowledgments.. 32

An Agent-Based Approach to Correctness in Databases...........................37
(Herbert Stoyan, Stefan Mandl, Sebastian Schmidt, Mario Vogel)
1 Introduction .. 37
2 The Problem, Preliminaries.. 38
3 The WW-Person Database ... 40
4 Means of Databases: Constraints and Triggers .. 42
5 An Agent-Based Approach .. 44
6 Prototypical Implementation .. 46
7 Conclusion.. 47

XVI Table of Content

PART II INFRASTRUCTURAL SERVICES

Thirty Years of Server Technology —
From Transaction Processing to Web Services ..51

(Klaus Meyer-Wegener)
1 Introduction .. 51
2 Kinds of Servers ... 52
3 A General Server Concept.. 55
4 The Task... 56
5 Server Implementation ... 57
6 Discussion of Server Architecture.. 63
7 Summary and Conclusion .. 64

Caching over the Entire User-to-Data Path in the Internet67
(Theo Härder)
1 Motivation .. 67
2 The Client-to-Server Path... 68
3 Web Caching .. 71
4 The User-to-Data Path.. 76
5 Constraint-Based Database Caching .. 79
6 Seamless Processing of Web Objects... 86
7 Open Problems ... 87

Reweaving the Tapestry: Integrating Database and
Messaging Systems in the Wake of New Middleware Technologies.........91

(Sangeeta Doraiswamy, Mehmet Altinel, Lakshmikant Shrinivas,
 Stewart Palmer, Francis Parr, Berthold Reinwald, C. Mohan)
1 Introduction .. 91
2 Advanced Messaging Systems — The Frontier Beyond Basic Queuing..... 93
3 What Can Databases Do for Advanced Messaging Systems? 97
4 A Survey of Database and Messaging System Integrations....................... 100
5 An Integrated Database Messaging Prototype ... 103
6 Conclusions .. 108

Data Management Support for Notification Services111
(Wolfgang Lehner)
1 Introduction .. 111
2 General Architecture and Characteristics... 116
3 Subscription Message Data Model... 120
4 Subscription Processing Model.. 128
5 Summary and Conclusion .. 133

Table of Content XVII

Search Support in Data Management Systems...137
(Andreas Henrich)
1 Motivation ... 137
2 Processing Complex Similarity Queries .. 138
3 Processing Similarity Queries in P2P Networks .. 148
4 Conclusion.. 154

PART III APPLICATION DESIGN

Toward Automated Large-Scale
Information Integration and Discovery...161

(Paul Brown, Peter Haas, Jussi Myllymaki,
 Hamid Pirahesh, Berthold Reinwald, Yannis Sismanis)
1 Introduction .. 161
2 A Next-Generation Integrated Database Management System.................. 163
3 Automated Similarity Analysis .. 166
4 Identifying UBOs ... 174
5 Querying... 176
6 Conclusion.. 179

Component-Based Application Architecture for
Enterprise Information Systems ..181

(Erich Ortner)
1 Introduction .. 181
2 Components.. 183
3 Tools... 186
4 Construction Methodology... 190
5 Application Systems Architecture.. 193
6 Future Perspectives .. 198

Processes, Workflows, Web Service Flows: A Reconstruction201
(Stefan Jablonski)
1 Application Integration .. 201
2 A General Model for Processes.. 204
3 Workflow Management — Revisited .. 205
4 Web Service Flows — Revisited ... 207
5 Comparison and Assessment.. 209
6 Conclusion.. 212

XVIII Table of Content

Pros and Cons of Distributed Workflow Execution Algorithms.............215
(Hans Schuster)
1 Motivation .. 215
2 Requirements on Distributed Workflow Execution 216
3 Approaches to Distributed Workflow Execution 222
4 Performance Analysis .. 227
5 Related Work.. 231
6 Conclusion.. 232

Business-to-Business Integration Technology...235
(Christoph Bussler)
1 Business Events.. 236
2 B2B Integration Technology Architecture... 241
3 Database Support for B2B Integration Technology................................... 245
4 Future Trends and Extended Database Technology................................... 251
5 Conclusion.. 253

PART IV APPLICATION SCENARIOS

Information Dissemination in Modern Banking Applications................257
(Peter Peinl, Uta Störl)
1 Introduction .. 257
2 A Large Scale Real-Time System for FX Trading..................................... 258
3 Setting Up an Infrastructure for Efficient Retrieval of

Unstructured Information... 270
4 Summary and Conclusion .. 275

An Intermediate Information System Forms Mutual Trust277
(Dieter Steinbauer)
1 Introduction .. 278
2 The Credit Bureau — Benefits for the Credit Grantor and the Consumer. 278
3 Data Base as Mutual Trust — The Principle of Reciprocity...................... 279
4 Scoring — Risk Evaluation Based on the Common Data Base................. 283
5 Decision Support at Point of Sale .. 285
6 Integrated Scoring Systems.. 285
7 Automation of the Credit Transaction Process .. 286
8 Risk Evaluation and Risk Management of the Credit Stock...................... 290
9 Perspective: “Glass Citizen” or “Mobile Trust” .. 291

Table of Content XIX

Data Refinement in a Market Research Applications’
Data Production Process...293

(Thomas Ruf, Thomas Kirsche)
1 Introduction .. 293
2 Data Production at GfK Marketing Services.. 294
3 Data Refinement in the Master Data System ... 297
4 Data Refinement in the Data Acquisition System...................................... 300
5 Data Refinement in the Analysis System... 305
6 Data Refinement in the Reporting System... 310
7 Summary and Outlook ... 313

Information Management in Distributed Healthcare Networks.............315
(Richard Lenz)
1 Introduction .. 316
2 Integrating Health Information Systems .. 317
3 Embedding Decision Support into the Healthcare Process........................ 325
4 Evolutionary Information Systems in Healthcare 327
5 Infrastructure for Healthcare Networks.. 330

Data Managment for Engineering Applications.......................................335
(Hans-Peter Steiert)
1 Introduction .. 335
2 Applying Integration Technology in Engineering Domains 336
3 Enabling Agility in the Presence of Integration ... 341
4 Data Flow in Engineering Processes.. 347
5 Conclusions .. 354

List of Authors ...357

Children — Grandchildren — Great-Grandchildren...363

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 3-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Databases:

The Integrat ive Force in Cyberspace

Andreas Reuter

EML Research gGmbH, Heidelberg
Andreas.Reuter@eml-d.villa-bosch.de

Abstract. Database technology has come a long way. Starting from systems
that were just a little more flexible than low-level file systems, they have
evolved into powerful programming and execution environments by embrac-
ing the ideas of data independence, non-procedural query languages, exten-
sible type systems, automatic query optimization (including parallel execu-
tion and load balancing), automatic control of parallelism, automatic recov-
ery and storage management, transparent distributed execution—to just name
a few. Even though database systems are (today) the only systems that allow
normal application programmers to write programs that will be executed cor-
rectly and safely in a massively parallel environment on shared data, database
technology is still viewed by many people as something specialized to large
commercial online applications, with a rather static design, something sub-
stantially different from the “other” IT components. More to the point: Even
though database technology is to the management of persistent data what
communication systems are to message-based systems, one can still find
many application developers who pride themselves in not using databases,
but something else. This is astounding, given the fact that, because of the dra-
matic decrease in storage prices, the amount of data that needs to be stored
reliably (and retrieved, eventually) is growing exponentially—it's Moore's
law, after all. And what is more: Things that were thought to be genuinely
volatile until recently, such as processes, turn into persistent objects when it
comes to workflow management, for example.
The paper argues that the technological evolution of database technology
makes database systems the ideal candidate for integrating all types of ob-
jects that need persistence one way or the other, supporting all the different
types of execution that are characteristic of the various application classes. If
database systems are to fulfill this integrative role, they will have to adapt to
new roles vis-a`-vis the other system components, such as the operating sys-
tem, the communication system, the language runtime environment, etc. but
those developments are under way as well.

4 Andreas Reuter

1 Introduction

Databases have a tenacious habit of just not going away. This is true for the real data-
bases, disks, tapes, software, etc. that are run by big applications; those databases,
through the sheer mass of data accumulated have an inertia that reliably protects them
from being “moved”, technologically, platform-wise or in any other sense. And the
same observation holds (albeit for different reasons) for the scientific discipline of da-
tabase technology. Starting in the mid-80s, database researchers have been organizing
workshops and/or panel discussions once every three to five years, fully devoted to the
question of whether there is anything interesting left in the database arena. Mike Stone-
braker in particular loved to contemplate database-related questions such as “Are we
polishing a round ball?” [12]. The motivation for this is quite clear: After having solved
all the issues that once were considered interesting and hard (or so it seemed), is the
field going to lie fallow—which should trigger everybody to move on to something
more fertile, more promising.

The answers suggested in those workshops were mixed—as you would expect. But
even those people who still found interesting problems to work on had to admit, that
most of those problems were highly specialized compared to the early problems in ac-
cess paths, synchronization, and all the rest. So based on the discussions in those work-
shops one would have expected database technology to reach a saturation level quite
soon with only marginal improvements in some niches.

Therefore, it is exciting to see that database technology has undergone a transfor-
mation during the last couple of years, which few people have predicted to happen this
way—even though it is embarrassingly obvious in hindsight. Not only have databases
been extended by a plethora of new data types and functions (this was what everybody
expected), they rather have mutated from a big but separate system platform for pas-
sively storing data into a compute engine supporting a wide range of applications and
programming styles. The once-hot debate about object-oriented databases has been set-
tled completely by relational databases absorbing objects, complete with a powerful and
efficient extensibility platform, and by database objects becoming first-class citizens in
object-oriented languages through a common runtime system [4]. This has largely
solved another “old” database problem, the so-called impedance mismatch between re-
lational databases with their SQL-style, declarative programming model and the inher-
ently procedural nature of many programming languages.

But not only have database systems adopted features from other system compo-
nents; at the same time they have offered their own specific features such as set-oriented
programming, parallel programming, content-addressability, etc. as components to a
generic programming environment of modern systems.

All this still sounds very technical; one might say that the most annoying, long-
standing difficulties have been resolved, that the database people finally got it right. But
so what? Why would this justify the claim expressed in the title? The article will argue
that databases, as a result of the evolution sketched above, will—in future systems—
play a role that is very different from their traditional low-level, obscure role some-
where deep down in the system.

Databases: The Integrative Force in Cyberspace 5

2 New Data Sources, New Usage Patterns

Modern database technology has its roots in business data processing. In his textbook
on “Data Organization” [14], which was published in the early 70s and describes data-
bases as an emerging technology, Hartmut Wedekind characterizes databases as the
core of management information systems, designed to accommodate different structural
and operational schemes of a company—and to provide a query interface. Application
areas such as banking, inventory control, order processing, etc. were the driving forces
behind database products in the 60s and 70s—and to a certain degree they still are. But
all the time databases were considered some kind of passive, low-level infrastructure
(something close to the operating system) the only purpose of which was to enable new
types of applications, integrated management of data for both online and batch process-
ing, and a whole range of functions for archiving, recovery, etc. Databases were systems
for application developers, not for end-users. Even the query interfaces based on differ-
ent types of “user friendly” metaphors required a fairly educated user—they had to un-
derstand the schema (their particular view of it), for example. This is the reason why
Paul Larson, senior researcher at Microsoft is quoted saying “Database systems are as
interesting as the household plumbing to most people. But if they don't work right, that's
when you notice them.” This is the view we have come to accept: Databases are defi-
nitely necessary, but not particularly attractive—let alone exciting. Jim Gray [6] likes
to say that “databases are the bricks of cyberspace”. This again emphasizes the impor-
tance and the substance of the subject, but bricks are not very attractive either. One
could find many other such statements, but why worry about this in the first place?

Let us explain the reason by considering a very instructive analogy: In the early
1980s, one would have ascribed the same properties as quoted above to messaging and
distributed systems—necessary yet unappealing. But then something happened that
made Butler Lampson say that the greatest failure of the systems research community
over the past ten years was that “we did not invent the Web” [10]. And if you think about
it: The technology enabling the WWW is exactly what was developed by the “systems
research community”, but in contrast to what distributed systems were before, the Web
is attractive, and it made distributed computing technology available to everybody, not
just to technical people. So in order to understand / anticipate what database technology
might—or rather: should evolve to, it is essential to understand what caused the trans-
formation of distributed systems from something nerdy and boring into the hottest thing
in the IT arena—and beyond.

Obviously, the key point was that the Web offered the possibility of reaching be-
yond the confines of just one system, of unlimited connectivity on a global scale. True,
the underlying Internet had been around for quite a while when the Web came up, but
the TCP/IP-stack is not something many people can or want to develop applications on.
HTML was not a nice interface either, but it worked on a metaphor people are easily
familiar with, i.e., documents, rather than something arcane like a communication pro-
tocol. And it offered a totally new quality, the possibility of sharing contents without
any restrictions, and without the need to worry about the internal workings. So if a new
solution significantly increases the users’ power (be it in terms of functionality, or
reach, or speed), the quality of the interface initially does not matter too much. Many

6 Andreas Reuter

experts predicted that the Web would never succeed because of the awkwardness of
HTML; the same predictions were made for SMS. The experts were wrong on both
counts. On the other hand, nice interfaces do not translate into ready success if they do
not sufficiently empower the user. The quality of simple, unrestricted access to HTML
documents quickly created new usage patterns and new applications. Sharing of text
was augmented by function sharing, simple access grew into more sophisticated
processing patterns, organizational layers such as portals were introduced, overlay net-
works came into use, etc. Again, none of these things represented a genuinely new tech-
nology, but the way the existing technology was used and employed made all the dif-
ference.

Now the reader might ask: Where is the analogy to databases? Clearly, modern da-
tabase systems have much more powerful and high-level programming interfaces than
the TCP/IP protocol stack, there are databases embedded into end-user-oriented appli-
cation generators, database systems can handle distributed processing in a transparent
manner—so what can be learned from the comparison with the Web?

The answer can best be illustrated through an anecdote: At a workshop on future
research issues in databases that was held in 1992, about 40 researchers presented their
views on great new ways of improving database technology. Towards the end one of
the organizers asked a question: “You all have to manage a lot of data, contact address-
es, email, project-related data, references and the like. How many of you are using a da-
tabase system for that purpose?” Two hands went up, while the others eagerly explained
how database systems were too complicated to set up and to maintain, how the data
types were not adequate, how the integration with other tools was insufficient, and
many other such things. This was more than 10 years ago, but had the survey been con-
ducted today, the outcome would certainly not have been much different, because the
reasons have not changed. We store, manipulate and query data in many contexts, for a
large variety of purposes. Some data is strictly private; other data is shared to some de-
gree. Some data is transient, other data is (semi-) permanent. Each type of data, howev-
er, is used and supported by a specific tool: The email end everything pertaining to that
lives in the mail system; the appointment data lives in the calender system; project-re-
lated data lives in the planning tool; data that requires some calculation may live in a
spreadsheet; shared data lives in a company-wide database; and finally, one might have
one’s own database application (using, for example, Access) for keeping track of the
CDs, records, and books. But all those systems are separate as far as data management
is concerned. Clearly, for any given project, data related to that project will be found in
the mail system, in the calender, in the planning tool, and in some spreadsheets. But
there is no way of dynamically creating a “view” on the project that encompasses data
from all these sources. Or put it another way: Even if the mail system were built on top
of an SQL database (which most mail systems still aren’t), there would still be no way
of querying that database together with the company database, even if the data types
were overlapping. That explains why we are still using a specific tool for every relevant
purpose rather than managing all our data in one consolidated store—even if those tools
force us into storing the same data redundantly, into representing the same kind of in-
formation in different formats, and into manually synchronizing the different versions
of the same information—if we ever bother to do so.

Databases: The Integrative Force in Cyberspace 7

This situation, which characterizes the “state of the art” in managing a person’s pri-
vate data, is summarized in Table 1.

Tab. 1 Overview of Categories of Personal Data and the Types of (Technical)
Management Support

Category Tool/
Platform

Properties of
data store Data model Ref. to other

categories

Mail Email sys-
tem

Closed file
system or
database

Folder hierar-
chy; weakly
structured text
strings

Many: struc-
tural; value-
based;
concept-based

Addresses Mail system
or directory

Closed or
open file sys-
tem (LDAP)

Quasi-rela-
tional; various
„standards“

Many: struc-
tural; value-
based

Appoint-
ments

Calender
system

Closed file
system

Hierarchy of
time intervals;
unstructured
text strings

Many: struc-
tural; value-
based;
concept-based

Scheduling Planning
tool

Closed file
system or
database

Dependency
graph; weakly
structured text
strings

Many: struc-
tural; value-
based

Budgeting Spreadsheet Closed file
system or
database

Array; arithme-
tic expres-
sions; un-
structured
strings

Various: value-
based

Personal
inventory

4GL tool Open
database

Relational Various: value-
based

Personal
finance
(account
mgmt.)

Web fron-
tend to bank
application

Closed
database

Forms-oriented Many: value-
based

Personal
finance
(invoices,
receipts)

Shoebox,
paper folder

n/a n/a Many

8 Andreas Reuter

The above table is far from complete; our personal data “ether” comprises many
more categories: Messages from mobile phones and PDAs, insurance contracts and re-
lated claims, medical data, tickets, photos, and many more. Thanks to the advances in
(mobile) communication technology, ever more powerful data sources are entering the
personal domain. But the table suffices to clarify one important fact—a fact so trivial
that it is mostly overlooked, or regarded as irrelevant: When it comes to our personal
data, we have to deal with many different systems and technologies, ranging all the way
from advanced Web services down to paper in boxes. The electronic tools are strictly
categorized, using different platforms, different data models, and different engines. As
a consequence, integrating related data from different categories is not supported by any
of the participating tools and has to be done either by the owner of the data or—more
likely—is not done at all. This means both a significant loss of information, as is sug-
gested by the shaded column, and a high level of redundancy.

Table 1 also shows that most of the tools involved do employ database technology
somewhere deep down in the system. But even if a tool uses a full-fledged SQL system,
it restricts its functionality to its own needs, which means the database’s capabilities of
selecting, aggregating and joining data cannot be used for integrating the tool’s data
with those from other sources. It is ironic that many tool developers use this observation
as some kind of reverse argument, saying that they build their tool on top of a normal
file system instead of database system, because “we don’t need all these features”. But
obviously, considering Table 1, the lack of those features, especially those helping with
data integration, is causing a major problem for almost everybody. And the other argu-
ment that is very popular with developers, “our customers never asked for that”, does
not count; hardly anybody asked for the Web before it became available.

So the private domain is a large application (i.e., there are many users) where data
of different types have to be managed, some of them in collaboration with other parties.
If we view data integration as one of the key reasons for using a database, then here is
a big task for database systems, a task they do not fulfil today—even though all the tech-
nology needed is there. But this observation holds for other areas (outside the house-
hold) as well; let us briefly review some of the more demanding new database applica-
tions and usage patterns, again without any claim of completeness.

2.1 Science

In many fields of science, such as astronomy, biology, particle physics, etc. measure-
ment devices ranging from satellites to sequencers and particle colliders produce huge
amounts of raw data, which have to be stored, curated, analyzed and aggregated in order
to become useful for scientific purposes [7]. The raw data is only partially structured,
with some parts that conform to the relational model, but with other parts as well, such
as images of many different types, time series of measurements, event logs, and text
fields that either contain natural language or some kind of application-specific vernac-
ular [13]. The key properties of those data collections (irrespective of the many differ-
ences) are:

Databases: The Integrative Force in Cyberspace 9

• The raw data is written once and never changed again. As a matter of fact, some sci-
entific organizations require for all projects they support that any data that influence
the published results of the project be kept available for an extended period of time,
typically around 15 years.

• Raw data come in as streams with high throughput (hundreds of MB/s), depending
on the sensor devices. They have to be recorded as they come in, because in most
cases there is no way of repeating the measurement.

• For the majority of applications, the raw data is not interesting. What the users need
are aggregates, derived values, or—in case of text fields—some kind of abstract of
“what the text says”.

• In many cases, the schema has hundreds or thousands of attribute types, whereas
each instance only has tens of attribute values.

• The schema of the structured part of the database is not fixed in many cases. As the
discipline progresses, new phenomena are discovered, new types of measurements
are made, units and dimension are changed, and once in a while whole new concepts
are introduced and/or older concepts are redefined. All those schema changes have
to be accommodated dynamically.

Digital libraries belong into this category, too. Traditionally, libraries were treated
as something different, both organizationally and technically, but in the meantime it no
longer makes sense to separate them from the core business of storing and managing
scientific data, because whatever ends up in a scientific library—article, book, or re-
port—is to some degree based on scientific data, which thus should be directly linked
with the publications they support [6].

2.2 Data Streams

There is a growing number of applications where databases are used to create a near-
real-time image of some critical section of the environment. For example,
• RFIDs support tracking physical parts from the supplier, through the production pro-

cess, into the final product—until they need to be replaced for some reason;

• the activities of cell phones can be tracked both with respect to their physical location
and the calls they place and receive;

• credit card readers allow tracking the use of credit cards and their physical locations;

• sensors allow monitoring processes of all kinds: in power plants, in chemical reac-
tors, in traffic control systems, in intensive care units, etc.

The main purpose of such databases is to provide flexible query functionality, aggrega-
tion and extrapolation of the respective processes that can’t properly be achieved on the
physical objects. Based on those complex evaluations, one can support process optimi-
zation, fraud detection, early-warning functions, and much more.

10 Andreas Reuter

For that purpose, the database must be able to absorb the data at the rates of their
arrival. But the situation is different from gathering scientific data, where the streams
typically run at a fairly constant speed. For monitoring applications, the system must be
able to accommodate significant fluctuations in the data rate, including sharp bursts.
And in addition, the data must not simply be recorded. Rather, the incoming data has to
be related to the existing data in complex ways in order to compute the type of derived
information that is needed for, say, early warning applications. This gives rise to the no-
tion of continuous queries [1], the implementation of which requires mechanisms quite
different from classical database algorithms—and different data structures as well.

An important application of this type of processing is the publish-subscribe scenar-
io. Users can subscribe to certain patterns in the incoming data stream and/or to certain
events related to them, which are expressed as complex (continuous) queries on the da-
tabase. Depending on the application, there can be millions of subscribers using thou-
sands of different queries. Subscribers need to be notified of relevant changes in the in-
coming data in real time, so in case of many subscribers there is a correspondingly huge
stream of outgoing data, i.e., notification messages.

Another characteristic property of monitoring applications is the fact that they often
track properties of certain objects in space and time. Space is not necessarily the normal
3D space in which we move about, but at any rate, both space and time need to be first-
class citizens of the data model rather than just another set of attributes. References to
value histories must be supported at the same level as references to the current value,
which is what databases normally do.

And finally, the applications require the database to handle (and to trigger) events.

2.3 Workflow Management

Automatic management of complex, long-lived workflows has been a goal for at least
three decades [11]. The problem has been tackled from different angles, but so far only
partial solutions for special cases have been implemented. There is consensus, though,
that database technology has to be at the core of any general-purpose solution. Each
workflow instance is a persistent, recoverable object, and from that perspective is sim-
ilar to “traditional” database objects. On the other hand, workflows have many addition-
al features that go beyond what databases normally support.

A workflow has a very complex internal structure that is either completely de-
scribed in the workflow schema, or that can change/evolve over time. The latter is par-
ticularly true for workflows with a very long duration, because it is impossible to fully
structure them in the beginning. Workflows are active objects, as opposed to the passive
view that databases normally hold of their objects; workflows react to events, to inter-
rupts, they wait for pre-conditions to become true, they trigger events, etc. Workflows
have a huge amount of state (which is why databases are needed), partially ordered (as
defined by the schema) by activation conditions, by the temporal dimension, and many
other criteria. Workflow variables need to maintain their instantiation history, because
references to an earlier execution state are required both for normal execution as well
as for recovery purposes.

Databases: The Integrative Force in Cyberspace 11

Another aspect of workflows that can be supported by database technology is syn-
chronization of concurrent activities. Because workflows are long-lived, there will be a
large number of them executing in parallel, accessing shared data, competing for re-
sources, creating events that may be conflicting in various ways. Some of those con-
flicts may not be resolvable immediately, so the conflicting state together with the re-
sources involved has to be stored in a recoverable manner such that automatic or appli-
cation-dependent conflict resolution can be initiated at the proper time.

We could discuss more areas with novel requirements in terms of data management,
but the ones mentioned above suffice in order to make the key point: We see an increas-
ing need for consolidating the management of all kinds of data for all kinds of process-
ing patterns on a single, homogeneous platform—whatever the name of the platform
may be. People want to manage all their personal data in a consistent way, creating
much more than just a “digital shoebox”—the realm of personal data may well extend
into the professional domain, depending on the way people organize their lives [2]. In
the scientific domain, we see a convergence of storing scientific data (experimental
measurements), the outcome of all types of analyses, and the final publications, includ-
ing patents and the like. And in the business domain, there is a clear movement towards
integrating the management of business data and the management of applications work-
ing on those data.

Traditionally, all these fields were treated separately, with different underlying con-
cepts and theories, different techniques, and different technical and scientific commu-
nities. Databases were viewed as representatives of the world of structured data (and
still are, to a certain degree), whereas collections of text were the subject of “informa-
tion retrieval systems”. The notion of “semi-structured” systems [5] tried to bridge this
gap, but still convergence has not been achieved. In the same vein, temporal databases,
active databases, real-time databases, etc. have been viewed as different communities,
focused more on solving their particular problems rather than trying to come up with a
framework for integration. This definitely made good sense because solving the inte-
gration problem definitely is a tall order.

Right now it is ironic to see that many people believe in a very simple recipe for
integration: XML. As Gray observes in [8], the set of people believing in this approach
and those not buying it is stratified by age—yet he continues to say “... but it is hard at
this point to say how this movie will end.”

3 Technological Trends

When sketching technological trends that will be useful in solving the problems out-
lined above, we have to consider the database field as well as adjacent areas—whatever
measure of “nearness” one may choose to apply. This could result in a fairly lengthy list
of new ideas and techniques, which would be beyond the limitations of this paper.
Therefore, we will only name some of the key technologies expected to be instrumental
in extending the scope of databases such that they can support the novel applications
and usage patterns that already have emerged—and that will keep emerging in the fu-

12 Andreas Reuter

ture. Since we cannot discuss any of the technological trends in detail, we will only use
them to support our core argument that all the ingredients are there (or at least a suffi-
cient number is) to unleash the integrative power of database technology.

3.1 Trends in Database Technology

It is hard to judge which technological change is more important than another one, but
clearly one of the most consequential developments in database technology in recent
history has been the integration of the relational model (one should rather say: the SQL-
model) with object technology. The model-specific problems aside, this required an ex-
tension of the database systems’ runtime engine in order to accommodate the dynamic
nature of object-orientation—as opposed to the static characteristic of a relational sche-
ma. In the end, this led to an integration of the databases’ runtime engine with the run-
time systems of classical programming languages, which greatly enhanced the capabil-
ities of both worlds: The traditional “impedance mismatch” between the database oper-
ators and the programming languages they are embedded in largely disappeared. One
can run code in (almost) any language inside the database, and / or one can include da-
tabase objects into class definitions of an object-oriented programming language. Given
the powerful declarative programming model of SQL, one can use a database as an ex-
ecution environment for procedural, object-oriented, declarative, and rule-based pro-
gramming, whatever fits the problem structure best—all within one coherent frame-
work. This in itself is an extremely useful basis for integrating different data models and
execution patterns, as is illustrated by the current work on integrating text into classical
databases—two domains that have traditionally been quite separate.

The other important development has to do with the proliferation of methods and
techniques for indexing, combining and aggregating data in any conceivable manner.
Databases in the meantime efficiently support cubes of very high dimensionality with a
vast number of aggregation operators. They also include machine-learning techniques
for detecting clusters, extracting rules, “guessing” missing data, and the like. Novel in-
dexing techniques help in supporting a variety of spatial and temporal data models—or
rather: embeddings of the underlying data models. All this is accompanied by advanced
query optimizers that exploit the potential of those access paths and dynamically adapt
to changing runtime conditions. Again, those changes are essential for the task of inte-
grating everything in cyberspace.

Integrating the ever-growing volume of data requires, among many other things, a
database system that is highly scalable and can be tuned to the specific performance
needs of a wide range of applications. Modern database systems respond to these needs
by supporting new internal storage structures such as transposed files (aka column
stores), by exploiting the potential of very large main memories, by using materialized
views and others types of replication, by applying a rich set of algorithms for computing
complex queries, etc.

Databases: The Integrative Force in Cyberspace 13

3.2 Trends in Adjacent Fields

The new developments in database technology have either been provoked by or com-
plemented by new approaches in related fields. Whether it was the competitive or the
symbiotic scenario does not matter, it is the result that counts.

A key development in the field of programming languages and systems is the notion
of a common language runtime environment [2], which allows for a seamless integra-
tion of database functionality and programming languages. It also enables database sys-
tems to schedule and execute application programs autonomously, i.e., without the need
for a separate component like a TP monitor. This also means that database systems can
provide Web services without the necessity of a classical application execution environ-
ment.

The consequences of distributed computing, rapidly increasing storage capacities,
demands for non-stop operation (to name just a few) have caused operating systems and
other low-level system components to adopt database techniques. For example, most
operating systems now support ACID transactions in some form, and they offer recov-
ery functionality for their file systems similar to what database systems provide.

Devices other than general-purpose computers increasingly employ database sys-
tems. There are two main reasons for that: The first one is to have the device expose a
powerful standard interface (SQL) instead of an idiosyncratic, device-specific interface.
The other reason is that the device has to keep large amounts of data, which are most
easily managed by a standard database system. An example of the latter category is a
home-entertainment device that can store hundreds of CDs and provide the user with
sophisticated search functions.

The implementation of workflow engines requires an even closer collaboration be-
tween database systems and operating systems. The reason is obvious: A workflow is a
long-lived recoverable execution of a single thread or of parallel/interleaved computa-
tions, so everything that is volatile information for normal OS processes now has to be
turned into persistent objects, just like the static objects that are normally stored in da-
tabases. Examples for this are recoverable queues, sequences of variable instantiations
for keeping track of execution histories, etc. Many database systems support queues as
first-class objects, so in a sense the database is the real execution environment of work-
flows, with operating systems acting only on its behalf by providing expendable objects
such as processes and address spaces.

A last important trend is the adoption of schema-based execution in many areas.
Databases have had schemas (albeit rather static ones) all along, and so had operating
systems. Markup languages made messages and documents schema-based, a develop-
ment that led to Web services, among other things. Similar ideas can be found in many
application systems, where the generic functionality is adapted to the needs of a specific
user by populating various “schema” tables with the appropriate values. This process is
often referred to as customization, and—just like that classical notion of a schema—it
is an example of the old adage that “any problem can be solved by introducing just an-
other level of indirection.” And, of course, ontologies as a means of extracting concepts
from plain text can be viewed as yet another incarnation of the same idea.

14 Andreas Reuter

4 The Shape of Future Database Systems

This section will not give a description of what the title refers to—that would be way
too ambitious. We will rather summarize the observations from the previous chapter
and, based on this, identify a number of aspects that will determine the shape of future
database systems.

But first let us re-state the assumption that this paper is built on: Due to the availa-
bility of virtually unlimited storage at low cost1, data from a large variety of sources will
be gathered, stored, and evaluated in unforeseen ways. In many application areas, those
data collections will establish ever more precise images of the respective part of reality,
and those images will be more and more up-to-date. So for many purposes, decisions
will not be based on input from the “real world”, but on query results from the digital
images. Examples of this have been mentioned above.

Since this scenario talks about managing large amounts of data, we will consider it
a database problem, even though there is no guarantee that the technology finally sup-
porting such applications will not be given some other name—probably because “data-
base” does not sound cool enough. Anyhow, database systems capable of integrating
data of all types and supporting all kinds of processing patterns will have to be extreme-
ly adaptive, both in terms of representing the data and in terms of interacting with the
environment—which can be anything from sensor devices to applications programs and
users. They must not enforce structure upon the data, if there is no structure, or if any
structure that can be identified is likely to change. In those cases, schema modifications
(together with schema versioning) must be supported as well as (dynamic) schema
transformation [3]. In other cases, ontology-based representations might be a better op-
tion—XML will certainly be the lowest level of self-descriptive data. Classical appli-
cations will still use their more or less static schema descriptions, and in an integrated
system, all those techniques must be available at the same time, allowing queries to span
different models. For some data it must be possible to have it encapsulated by an object,
but make it accessible for certain types of queries as “raw data” as well. Many standard
tools and applications organize their data in a hierarchical fashion (e.g. folders), so this
kind of mapping must be supported—whether or not the data structure is inherently hi-
erarchical.

Future database systems will, because of the integrative role they have to assume,
have to deal with high levels of parallelism and with requests ranging from milliseconds
to months or more. This requires new synchronization primitives and new notions of
consistency—beyond those implied by the classical ACID transaction model. Most
likely, such extensions will be developed in collaboration with researchers from the
fields of programming languages, dependable systems, and maybe even hardware ar-
chitects [9].

Another consequence of the integrative role is the necessity of keeping the system
up at any time, under all circumstances. Any tuning, reorganization, repair, recovery or

1. This development is expected to be complemented by the availability of a high-band-
width mobile communication infrastructure.

Databases: The Integrative Force in Cyberspace 15

whatever has to be performed automatically, in parallel to normal execution. This de-
mand for a self-organizing, self-healing, self-you-name-it database is a subject of ongo-
ing research, and its feasibility will be determined by technical as well as economical
constraints.

As was mentioned above, it is not clear if the resulting solution will be perceived as
a database system (however “future” it may be), or if it will be dressed up in a different
fashion. One possible solution is to move a database system with (ideally) all the exten-
sions mentioned into the operating system and build a next-generation file system on
top of that. Such a file system would offer the conventional file types as well as XML-
stores, semi-structured repositories, stores for huge data streams, object repositories,
queues, etc. But they would all be implemented on top of an underlying database sys-
tem, which would still be able to talk SQL and provide all the mechanisms for consist-
ency, synchronization, recovery, optimization, and schema translation. But again: This
is just a possibility, and by no means the only one.

5 Conclusions

The key message of this article is plain and simple: There are many different applica-
tions and usage modes out there, some rather old, some emerging, which hold the po-
tential for integration at the level of the data they are dealing with. Everybody, home
user as well as professional, would benefit immensely from a technology that enables
them to transparently access and manipulate data in such an integrated view. Database
technology, together with a host of “neighboring” technologies, has all the components
required to do that. All it needs is an innovation comparable to the creation of the Web
on top of the Internet. Referring back to Lampson’s statement quoted in the beginning,
we should ask ourselves (as members of the technical database community): Will we
create this future, global, unified repository? If so, what will it look like? If not, why
not?

References

[1] Babu, S., Widom, J.: Continuous Queries over Data Streams. in: SIGMOD Record 30:3,
Sept. 2001, pp. 109-120.

[2] Bell, G.: MyLifeBits: A Lifetime Personal Store. in: Proc. of Accelerating Change 2004
Conference, Palo Alto, Ca., Nov. 2004.

[3] Bernstein, P.A., Generic Model Management—A Database Infrastructure for Schema Ma-
nipulation. in: Lecture Notes on Computer Science, No. 2172, Springer-Verlag.

[4] Common Language Runtime. in: Microsoft .NET Framework Developer’s Guide, http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecom-
monlanguageruntime.asp

16 Andreas Reuter

[5] Goldman, R., McHugh, J. and Widom, J.: From Semistructured Data to XML: Migrating
the Lore Data Model and Query Language. in: Proc. of the 2nd Int. Workshop on the Web
and Databases (WebDB '99), Philadelphia, Pennsylvania, June 1999, pp. 25-30.

[6] Gray, J.: The Laws of Cyberspace. Presentation at the International University in Germa-
ny, October 1998, http://research.microsoft.com/%7Egray/talks/1998_laws.ppt

[7] Gray, J., Szalay, A.S. et al.: Online Scientific Data Curation, Publication, and Archiving.
in: Proc. of SPIE Astronomy, Telescopes and Instruments, Waikoloa, 2002, pp. 103-107.

[8] Gray, J.: The Revolution in Database Architecture. Technical Report, MSR-TR-2004-31,
March 2004.

[9] Jones, C., et al.: The Atomic Manifesto: a Story in Four Quarks. in: Dagstuhl Seminar Pro-
ceedings 04181, http://drops.dagstuhl.de/opus/volltexte/2004/9.

[10] Lampson, B.: Computer systems research: Past and future. Invited talk, in: Proc. of
SOSP’99.

[11] Leymann, F., Roller, D.: Production Workflow—Concepts and Techniques. Prentice Hall,
1999.

[12] Proceedings ICDE Conference on Data Engineering. Vienna, 1993
[13] Ratsch, E., et al.: Developing a Protein-Interactions Ontology. in: Comparative and Func-

tional Genomics, Vol. 4, No. 1, 2003, pp. 85-89.
[14] Wedekind, H.: Datenorganisation. Walter de Gruyter, Berlin New York, 1975.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 17-35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Federating Location-Based Data

Services

Bernhard Mitschang, Daniela Nicklas, Matthias Grossmann,
Thomas Schwarz, Nicola Hönle

University of Stuttgart, Germany
{mitschang, nicklas, grossmann, schwarts, hoenle}@informatik.uni-stuttgart.de

Abstract. With the emerging availability of small and portable devices
which are able to determine their position and to communicate wirelessly,
mobile and spatially-aware applications become feasible. These applications
rely on information that is bound to locations and managed by so-called lo-
cation-based data services. Large-scale location-based systems have to cope
efficiently with different types of data (mostly spatial or conventional). Each
type poses its own requirements to the data server that is responsible for man-
agement and provisioning of the data. In addition to efficiency, it is overly
important to provide for a combined and integrated usage of that data by the
applications.
In this paper we discuss various basic technologies to achieve a flexible, ex-
tensible, and scalable management of the context model and its data organ-
ized and managed by the different data servers. Based on a classification of
location-based data services we introduce a service-oriented architecture that
is built on a federation approach to efficiently support location-based appli-
cations. Furthermore, we report on the Nexus platform that realizes a viable
implementation of that approach.

1 Introduction

Pervasive computing has drawn increasing attention in the past years. The vision is that
smart everyday objects communicate and cooperate to provide services and information
to users. Meanwhile, a multitude of applications has been developed. These applica-
tions cover different domains, such as tourist guides [9, 1], indoor information systems
[11, 10] and smart environments [24], to name a few.

A variety of supporting infrastructures has been proposed, which facilitate the de-
velopment of applications. However, these infrastructures mostly address a distinct ap-
plication domain, such as context processing based on sensors [38] or providing appli-
cation-specific context [9, 40]. Also, when new services, hardware, or environmental
information such as maps become available to an application, other existing applica-
tions can not automatically use them. Interaction between different applications based

18 Bernhard Mitschang et al.

on their context, e.g., identity, location, or state, is not possible if they do not rely on a
common representation of this context.

Context-aware systems have attracted researchers in the past years starting from lo-
cation-aware computing. Early work [39] considered context to be related to the loca-
tion of users, the people nearby, and resources which can be accessed based on the spa-
tial proximity. Depending on the focus of research projects, further definitions of con-
text have been proposed. Context-aware applications use context information in order
to adapt their behavior. The different context sources and characteristics of context in-
formation, e.g., type and representation, has led to a number of different approaches to
supply applications with context information. Besides specialized approaches, e.g., the
context toolkit [38] for sensor integration or the location stack for positioning systems
[20], a generic approach based on a database-style management of context information
has evolved that typically offers interfaces to query context information or to receive
notifications on context changes.

For many context-aware applications, the spatial environment of the user is most
relevant. So-called location-based applications, or location-based services (LBS), de-
fine a specific class of context-aware systems that adapt their behavior to the spatial
context of the user, e.g., by providing local maps and navigational information. In this
application area, there are already commercial solutions available, e.g., location-based
information systems for mobile phones or car navigation services. They rely on spatial
data that has previously been gathered and preprocessed to fit their needs. This data is
expensive, because in many cases it has to be manually collected, edited and updated.
Typically, spatial data is fused with traditional information from databases or web pag-
es, augmented with a spatial reference, to form what is called the context model.

In the context of the Nexus project [31], we design and implement an open platform
to manage such a context model. Based on an extensible set of so-called location-based
data services, we introduce a service-oriented architecture that is built on a federation
approach to flexibly and efficiently support location-based applications. All this is re-
flected by the coarse-grained architecture that is depicted in Fig. 1.

In this paper, we detail on that architecture approach and on how the Nexus project
realizes that approach. In doing so, in the next section the characteristics of location-

Fig. 1 Architectural Overview

Nexus-Platform
service-orientation, openness, federation

Location-based
Application

Location-based
Data Service

Location-based
Application

Location-based
Data Service

Nexus-Platform
service-orientation, openness, federation

Location-based
Application

Location-based
Data Service

Location-based
Application

Location-based
Data Service

Federating Location-Based Data Services 19

based data are discussed and described in the context of a spatial ontology. A definition
of as well as a classification of location-based data services is given in section 3, and
the federation of the data services to provide for a global spatial context model is dis-
cussed in section 4. Finally, section 5 focuses on the Nexus platform, its system archi-
tecture as well as on syntactic and semantic data integration issues. section 6 closes the
paper with a short conclusion.

2 On Location-Based Data

In this section, we go into the details on the characteristics of location-based data: the
difference between virtual and real-world objects and a categorization of spatial ontol-
ogies which is helpful to understand what and how location-based data is modelled.

2.1 Virtual and Real-World Objects

We can distinguish two major categories: information that is relevant at a certain loca-
tion (and can be seen as virtual objects residing at this location) and models of real-
world objects like buildings, persons or sensors. Examples for virtual objects are web
pages, time tables or the menu of a restaurant. To make this data location-based, a ref-
erence to the real world is needed. It can be either a relation to a real-world object (e.g.,
the menu as an attribute of a restaurant), or the virtual object is simply bound to a geo-
graphic coordinate. In the following, we focus on such location-based virtual objects.

To access and interact with these virtual objects, new user interaction paradigms are
needed: virtual objects can be displayed on maps. With augmented reality, virtual ob-
jects can be displayed along the natural sight of the user. There are also metaphors of
the real world like Virtual Information Towers [26]—equipped with web pages as post-
ers or Stick-E notes [35]—leaving digital notes like Post-ITs which can be found by
other users.

It is possible to build simple location-based services by just modeling virtual ob-
jects, e.g., Google Local Search [17] or state-of-the-art restaurant and hotel finders.
However, for more sophisticated applications like smart environments (e.g., [24] or
[4]), capture applications (e.g., [36]) or location-based games [34], more knowledge
about the surrounding of the user is needed. Therefore, a model of the real world is
needed.

Real-world objects can be used to build up maps (with buildings, streets, sightsee-
ing locations etc.), to navigate (using navigation connections and topological informa-
tion) or for spatial queries (friend finder using the positions of familiar mobile users).
They all have some spatial attributes like position or extent and, for dynamic models, a
temporal aspect like valid time. The spatial attributes follow an underlying spatial mod-
el which is either topological or geometric. Topological models often use hierarchical
addresses like de/stuttgart/university/building38 and can be queried
using a spatial calculus [37]. A geometric or geographical model is most flexible: with

20 Bernhard Mitschang et al.

spatial predicates and queries, objects can be precisely related to each other (inside,
overlap, nearest neighbor), and symbolic or topological information can easily be em-
bedded into the model. A location is described using coordinates, which always have a
coordinate system (CS) associated with them. Indoor applications often use a local CS
whose origin is a point within the room or building. Outdoors, the position can be ob-
tained from a Global Positioning System (GPS) sensor in WGS84 [44] format. Spatial
databases, geographical information systems or map data use even more CSs, e.g., one
of the 2824 different CSs contained in the EPSG database [14].

2.2 Spatial Ontologies

Virtual and real-world objects form together the context model. The context model is an
ontology containing the relevant location-based data that the applications need in order
to perform well. Obviously, various kinds of information on different abstraction levels
are conceivable. This aspect has been well addressed by the five tiers of spatial ontolo-
gies proposed by A. U. Frank (see Tab. 1):

Tab. 1 The five Tiers of Spatial Ontology according to [15]

Ontology Tier 0: Physical Reality

reality :: world –> property –>
spacePoint –> timePoint –> value

Ontology Tier 1: Observable Reality

observation :: world –>
observationType –> location –>
value

Ontology Tier 2: Object World

observation :: id –> time –>
observationType –> value

Ontology Tier 3: Social Reality

getname :: object –> name
findObject :: name –> environment
–> object

Ontology Tier 4: Cognitive Agents

rules used or deduction

Federating Location-Based Data Services 21

Tier 0 is the ontology of physical reality. It contains the assumption that there is ex-
actly one real world; hence, for every property in the world and for a given point in time-
space there is a single value.

Tier 1 includes observations of reality. This is the first tier that can be accessed in
computational systems. Here, a value can be obtained at a location with a given obser-
vation type. The type determines the measurement scale of the value (e.g., nominal or
rational) and the measurement unit (e.g., meters or seconds). For spatial values, also a
coordinate system must be given. In general, values have a limited accuracy due to ob-
servation errors.

In tier 2, single observations are grouped together to individual objects that are de-
fined by uniform properties. Now, the value of an observation is the state of a whole
object, given by an id. Andrew U. Frank only considers physical objects in this tier, i.e.,
”things which exist in the physical world and can be observed by observation methods“.
They have a geometric boundary in the world but can change over time (e.g., dunes or
fluids).

Until now, the ontology tiers cover data that can be seen as agreeable reality—you
can send out a team of geographers or students to model physical objects and they will
come to an agreement about their observations. In tier 3, the socially constructed reality
is represented. Social reality includes all the objects and relations that are created by so-
cial interactions. These are properties that are classified and named within the context
of administrative, legal or institutional rules. Object names belong to this tier since they
are assigned by culture; for many important things (but not all) there are functions to
determine the name and to find the object by name in a certain environment.

Finally, in tier 4 the rules are modeled that are used by cognitive agents (both hu-
man and software) for deduction. This tier is normally built into database query lan-
guages, applications or inference engines of knowledge-based systems.

So, what is the use of these five tiers? They help in understanding what kind of data
you have and what level of interpretation they offer. The real-world objects from sec-
tion 2.1 are typically located in tier 2, unless they represent administrative or business
related objects (e.g., city boundaries), which makes them belong to tier 3. Virtual ob-
jects are tier 3 since they are socially constructed as links to the digital world.

The higher the tier, the more difficult it is to integrate and share data from different
models, because higher tiers incorporate more interpretation. Up to tier 3, scalable and
semi-automatic matching is possible. Tier 4 information is highly application-depend-
ent. Either it is part of the applications (and therefore hard to reuse) or it is explicitly
given as rules on facts in a fully-fledged ontology. Then, reuse is possible on rather
small models, but due to complexity issues, these solutions are not very scalable [6].

3 Classification of Data Services

Large-scale location-based systems (LBS) have to cope with large amounts of different
types of data. Each type poses its own requirements to the server that is responsible for
management and provisioning of the data. In some cases, it is even impossible to pro-

22 Bernhard Mitschang et al.

vide the data via a specialized server, instead existing information systems, e.g., the
World Wide Web, have to be integrated with the LBS. This section provides an over-
view on different kinds of servers.

3.1 Integrating Existing Data Services

The most fundamental functionality of a LBS can be characterized by two functions:
f1:ID locations (given the ID of an object, return its location) and f2:locations 2ID

(given a location, return the IDs of all objects belonging to this location). In conse-
quence, to integrate an existing information system (let’s call it here: base system) with
a LBS, two problems have to be addressed: A wrapping functionality has to be provid-
ed, which maps the data model and query language of the base system to the ones of the
LBS, and f1 and f2 have to be provided, in case they are not already part of the base sys-
tem’s functionality. In some cases, it is also necessary to map different location models:
LBS typically represent location as latitude and longitude, while the base system may
use a symbolic form, e.g., postal addresses. Mapping symbolic location names to coor-
dinates is known as geocoding.

Fig. 2 shows a classification of base systems. It can be assumed that every system
offering f2 also offers f1. The spatial access class contains systems, which provide f1 and
f2, e.g., GIS. The other branch contains systems, for which f2 has to be provided exter-
nally, based on more or less complete implementations of f1. This is usually done by
scanning the data of the base system, building a representation for f2 and storing it in a
dedicated access component.

Some base systems provide an explicit, direct machine-understandable implemen-
tation of f1 without providing f2 (explicit location in Fig. 2). An example for this are web
pages which contain the DC.Coverage.Spatial meta-data element [13]. Given
the ID (URL) of such a web page, its location can be easily determined. f2 can be con-
structed by a web robot, which searches pages for the DC.Coverage.Spatial
meta-data element and stores its results in a dedicated access component as mentioned
above.

Fig. 2 Classification of Existing Data Services

Federating Location-Based Data Services 23

The DC.Coverage.Spatial meta-data element is actually rarely used. Much
more web pages contain implicit location information in human-readable formats, typ-
ically by mentioning addresses or location names somewhere in their body (implicit lo-
cation in Fig. 2). Processing those pages is similar to the procedure described above,
however, computing f1 is more complex. Usually, some kind of text analysis has to be
applied [22, 23]. Precision and recall is typically much lower than for explicit location
information. Base systems may also contain data relevant to certain locations without
containing this location information itself, or rather contain the location information in
such a way that large amounts of domain knowledge would be necessary to derive it (no
location in Fig. 2). In this case, f1 and f2 have to be built manually.

3.2 Considerations for New Data Services

For data services specifically designed for integration in a LBS, it can be assumed that
a matching interface as well as f1 and f2 are present. Implementing new data services
however opens the chance to optimize the service for special classes of data. Fig. 3
gives an overview of the different types of data.

Representations for objects like buildings, roads or rooms occupy large amounts of
data. This kind of data is typically needed for drawing maps, for navigation aides or
tourist guides. It can be called static data, because it is rarely or never changed. Sets of
static data, e.g., all building outlines of a city or the complete facility management of an
office building can be very large. Often, this kind of data is hard to collect, resp. expen-
sive to buy, so protection against loss of the data is necessary. Static data can easily be
cached. Because of the infrequent updates, the probability that a cached data item gets
invalid is very low, so efficient, optimistic approaches usually need not to take special
care to prevent from invalid cache data. Standard database systems with geographic ex-
tensions are adequate to store static data. For smaller data sets, main memory databases
may also be used.

Another type of data often managed by LBSs is what can be called dynamic data.
In contrast to static data, dynamic data is updated frequently. While static data is typi-
cally collected by hand or in a semi-automatic way, dynamic data is mostly fed into the

Fig. 3 Classification of new Data Services

24 Bernhard Mitschang et al.

system in a fully automatic way by some kind of sensor. Consequently, dynamic data
need not to be protected against data loss. If the infrastructure component crashes, it can
retrieve the current value from the sensor afterwards. If the value had been saved before
the crash, it would probably be outdated anyway. Therefore, dynamic data may be
stored in a pure main memory system. It is even possible to implement servers on ex-
tremely small devices, which make the measurement of a few sensors connected to the
device available to the LBS.

For location-based services, it must be differentiated between dynamic location da-
ta, like positions of persons or vehicles, and other dynamic data, like the temperature of
a room. Being the most important selection criterion, frequent updates of the position
cause frequent changes to – depending on the actual implementation of the service – in-
dex structures or data distribution. This is exactly the case for the location of mobile ob-
jects managed, e.g., in a moving objects database [42].

4 Federation Issues

As we have seen in the previous section, location-based data may be stored in many dif-
ferent ways, and may be distributed across several servers and providers. Utilizing all
this data in a combined fashion provides major benefits – higher data quality (increased
coverage, more detail, more information) and higher availability (not depending on a
single provider) – but incurs also additional processing effort and system design con-
siderations, which we discuss in this section. We first collect the requirements to a fed-
erating middleware component that performs the combination task. Then, we discuss
system architecture, syntactic integration, and semantic data integration issues.

In the following, we discuss these major federation issues. Whenever useful, we re-
port on how the Nexus platform copes with these issues. Then, in section 5, we intro-
duce the Nexus platform in detail.

4.1 Requirements

A federating middleware for location-based services has to meet several requirements:
transparency for the application, dynamic data provider configurations, semantic data
integration, efficiency, and, in most cases, applications running on mobile devices.

The most important requirement is to make it as easy as possible for an application
to access the combined data of many providers. For this, a federating middleware may
provide several kinds of transparency characteristics: schema, heterogeneity, location
and name, and distribution transparency [8].

Schema transparency lets an application use a single global schema to access all da-
ta. If a provider stores its data in a different schema, the federating middleware trans-
forms it to the global schema. In the Nexus platform we require all data providers to per-
form the transformation step themselves, as they know best how to map their data to the
global schema.

Federating Location-Based Data Services 25

Heterogeneity transparency lets an application access all data using a single type of
API, like textual SQL queries, JDBC function calls, or SOAP messages. The federating
middleware has to offer one or more of those APIs and it has to access each data pro-
vider using its own API. In Nexus we have defined the query language AWQL and the
data exchange format AWML [33] which are used throughout the platform.

Location and Name Transparency lets an application specify declaratively in which
data it is interested in without needing to know where the data is actually located. The
federating middleware needs to utilize some kind of directory, naming, or look-up serv-
ice to determine the location of the desired data. In the Nexus platform we use the Area
Service Register for this task.

Distribution transparency hides from the application that the data may be originally
coming from different providers, even the data constituting a single object. The feder-
ating middleware needs to piece together data fragments originating from different pro-
viders but belonging to the same object. In the Nexus platform we use some semantic
data integration techniques to merge multiple representations of an object, see below.

The second requirement, dynamic data provider configurations relieves the provid-
ers from any obligations. New providers may join the system, old providers may be-
come temporarily (network partitioning) or permanently (bankruptcy) inaccessible,
while the overall system should continue to work with what is available right now [31].
This requirement can also be fulfilled using a look-up service (like the Nexus Area
Service Register), where new providers can register themselves during run time of the
overall system.

The semantic data integration requirement addresses inconsistencies in the data of
two providers even after the schemas have been adapted. Different providers may offer
data concerning the same physical world entity. Four cases are conceivable here: First,
the providers have complementary information on the same object (opening hours vs.
special exhibition). Secondly, the data on the same object is overlapping, even conflict-
ing (house is red vs. house is green). Thirdly, one object is an aggregation of several
other objects (mall vs. single shops). Fourthly, each provider models a complex real
world context using a bunch of objects (large road crossing). In order to hide these in-
consistencies (originating from the data’s distribution) from the application, the feder-
ating middleware needs to apply domain-specific semantic integration algorithms [41]
as done in Nexus.

The fourth requirement, efficiency, demands to limit the overhead partially in-
volved by meeting the above three requirements. Therefore, latency times have to be
kept at a minimum to not overstrain the users’ patience. At the same time the system
has to support many concurrent users. These requirements call for integrating load bal-
ancing and caching features into the federating middleware [30].

Finally, as location-based applications often run on mobile devices, we have to con-
sider their characteristics. While the federating middleware is always on, has high com-
putational power, and is connected to a wired network with a high bandwidth, the op-
posite is the case for the mobile device: it is only sometimes on (to save battery), has
limited computing resources, and is typically connected to a wireless network with a
low bandwidth that is also shared with other devices. This influences especially the in-

26 Bernhard Mitschang et al.

teraction patterns between applications and caches on the mobile device on one side and
the federating middleware on the other side. Also, as the user’s position is an important
context information, a moving user also generates a lot of position updates [21].

4.2 System Architecture: Federation Vs. Integration

To combine the data of several providers two different approaches are conceivable: the
federation approach and the integration approach.

The federation approach leaves all data at its original storage location and forwards
incoming requests on the fly to the data providers, collects all responses, and integrates
the responses on the fly to a final response that is returned to the application. Schema
and API heterogeneities are dealt with by so-called wrappers. Data inconsistencies are
dealt with when integrating the data from the different responses.

The integration approach copies all data to a centralized data warehouse, which is
then used as the sole source to get any data from. Schema and API heterogeneities as
well as data inconsistencies can be solved when loading the data into the warehouse.

We do not consider approaches that require to alter the original data sources in any
way, e.g., change the schema or the data storage software.

The integration approach’s advantage is that no complex data transformations need
to be performed at run time, leading to fast and predictable response times. However,
such a warehouse can easily get very large, as especially spatial data sets tend to be vo-
luminous. Data providers need to give away their data and can no longer impose any
access restrictions. Also, the integration of new providers and the removal of quitting
ones may require extensive alterations to the warehouse. All updates, e.g., originating
from sensor measurements, need to be sent to the single warehouse, which easily be-
comes a bottleneck.

The federation approach’s advantages are the integration approach’s disadvantages.
The data stays at the providers, new providers can be easily added to the system, and
updates can be performed locally at each provider. However, the data needs to be inte-
grated at runtime possibly involving complex semantic data integration algorithms. Al-
so, the overall response time suffers from forwarding the queries to the data providers.
And, if a data provider becomes inaccessible, no backup copy of its data is available, as
it would be in the data warehouse.

The Nexus platform uses the federation approach due to the requirement to allow
for dynamically changing provider configurations, to give the data providers more flex-
ibility, to give them more control over their data, and to enable the decentralized
processing of updates.

Federating Location-Based Data Services 27

4.3 Federation Techniques: LAV Vs. GAV

The relationship between a data provider’s source schema and the federating middle-
ware’s global schema can be described in several ways of which the most important
ones are global-as-view (GAV) [16] and local-as-view (LAV) [28].

In the GAV approach a construct in the global schema is defined as a view over one
or many constructs in all participating providers’ source schemas. While this enables to
process queries efficiently, the global schema’s definition needs to be adapted when
providers enter or leave the system.

The LAV approach is the other way round. A construct in a provider’s source sche-
ma is defined as a view over one or many constructs in the global schema. While this
allows to add and remove providers without altering the global schema, query process-
ing leads to the ”answering queries using views“ problem, which is known to be NP-
hard [19].

In the Nexus platform we use a simplified LAV approach to allow for dynamic pro-
vider configurations. In our approach we require the data providers to offer their data in
the format of the global schema. The providers have to deal with any data and schema
transformations themselves. Now, a local schema construct (an object class) is defined
using only one construct of the global schema (the same object class). Additionally, re-
strictions on the value ranges of all attributes may be defined. So, a provider may, e.g.,
define to offer hotels in Stuttgart, which connects the local hotel construct to the global
hotel construct and restricts the location attribute to a certain area. We store this infor-
mation in the Area Service Register (ASR). This simplification allows us to process
queries without NP-complete query reformulation. The ASR determines the relevant
data providers in at most O(number of registered providers). Typically this can be done
a lot faster if fewer than all providers qualify for a query. All relevant providers can be
accessed in parallel as no query sent to a provider depends on the result of another one.

4.4 Semantic Data Integration: Schema Matching and Instance
Matching

Integrating the data from many different providers into a single global schema with the
goal to eliminate any inconsistencies and duplicates is a two-step process. In the first
step the provider’s schema needs to be matched to the global schema and mapping rules
need to be defined. While the schema matching problem is still an active research area
[7], there are already semi-automatic tools available that address this problem [29]. In
the Nexus platform we delegate this problem to the data providers and require them to
transform their data to our global schema themselves. A provider can either precompute
this transformation or process it on the fly in a wrapper component.

Matching the schema does not solve all problems. Different providers may model
the same physical world entity in different ways, e.g., if they use different sensors or
have different perspectives. Thus, in a second step the instances of different providers
have to be matched after they have been transformed into the global schema format. For
this, domain-specific algorithms have to be applied (e.g., [43, 12, 45]):

28 Bernhard Mitschang et al.

• adapting the level of detail by aggregating a group of objects into a single one or by
generalizing an object to strip off unnecessary details,

• by comparing location and other attributes to detect matching objects and then merg-
ing them by unionizing their attributes,

• or by merging groups of objects representing parts of a road network, to name just a
few.

In the Nexus project we are on the way to implement all of the mentioned algorithms to
achieve the tightest possible integration of data providers.

5 Nexus — A Service-Oriented Architecture

The goal of the Nexus platform is to support all kinds of context-aware applications
with a shared, global world model. To achieve this, the platform federates (section 4)
local models from data services (section 3).

We see the Nexus platform architecture as a service-oriented architecture. In the
following subsection we present the characteristics of a service-oriented architecture.
After this we introduce the Nexus platform as a service-oriented architecture and point
out its major characteristics.

5.1 Characteristics of a Service-Oriented Architecture

In general, a service oriented architecture (SOA) is a collection of services which can
communicate with each other. In the following, we will concentrate on SOA definitions
which are mainly used in the context of Web Services and can be found in [2].
The overall goal of a SOA is to enable reuse of functionality already provided by exist-
ing systems: Why should we do something ourselves if someone else is an expert?
In a SOA, the interacting software agents can be service providers or service consumers.
A service is defined as a unit of work, which is offered by a service provider. Service
consumers want to use a specific service exploiting the result delivered by that service
invocation. Note, that one software agent can be both, a service provider and a service
consumer. Basic characteristics of SOAs are:

• SOAs consist of a small set of simple interfaces. The interfaces are available for all
providers and consumers. Providers and consumers interact by exchanging messages
using the interfaces.

• The interfaces are generic, i.e., application specific semantics have to be expressed
in the messages.

• The messages are descriptive rather than instructive, because the service provider it-
self is responsible for solving the problem.

• Vocabulary and structure of the messages are limited for efficient communication.

Federating Location-Based Data Services 29

• Extensibility of the message schema is vitally important and allows introducing new
services.

• A mechanism to discover service providers by service consumers is required.
For scalability reasons, most services are stateless, i.e., each message must contain all
necessary information for the provider to process it. Nevertheless, stateful services are
existing, too, e.g., for efficient communication or customized services.

5.2 The Nexus Platform

The goal of the Nexus platform is to offer generic support to context-aware applica-
tions. The basic approach is to provide a global context model as a federation of local
context models (Fig. 4). Typically those local context models provide different types of
context information: representations of real world and virtual objects as described in
section 2.1.

Our main application area are location-based services, i.e., the most important con-
text in the Nexus platform is spatial information like positions and extents of objects.
The Nexus platform offers generic support for different kinds of location-based appli-
cations, e.g., multi-modal navigation applications, the Smart Factory [4], the Nexus
Rallye [32], and mobile tourist guides [9, 1].

Local context models can be provided by location-based data services (section 3).
Existing digital information spaces like the WWW can be integrated as described in sec-
tion 3.1. Sensors keep local models up to date (e.g., the position of a person).
Now, we will give a short overview over the architecture of the Nexus platform as
shown in Fig. 5. For more details see [31].

Fig. 4 Nexus Vision

FederationFederation

Local
Context
Models

Digital
Information
Spaces

Context-
aware
Applications

Sensor
Data

WWW Digital Libraries

Smart
Factory

Mobile
City Guide

Multimodal
Navigation

...

Global
Context
Model

Nexus
Rally

30 Bernhard Mitschang et al.

Context Server. A context server is a location-based data service as described in sec-
tion 3 and stores a local context model. To be a context server, the location-based data
service has to fulfil two requirements: it has to implement a certain interface (simple
spatial queries and result representations given in a specified XML language) and it is
registered with its service area and object types to the Area Service Register (compara-
ble to a spatially enhanced DNS).

There can be many different implementations of a context server [18]. For provid-
ing large scale geographical models, we used a spatially enhanced database. We cope
with the high update rates of the positions of mobile users using a distributed main
memory system [27]. For the Aware Home we adopted a lightweight spatial server as
Context Server [25]. Even small-scale sensor platforms like the ContextCube [3] can be
used as a context server.

Federation. A federation node mediates between applications and context servers. It
has the same interface as a context server, but does not store models (except caching).
Instead, it analyses an application request issued as a query, determines the context
servers that could fulfil the query and distributes the query to these servers. Then it com-
bines the incoming result sets to a consistent view and returns this to the application.
For query distribution and service discovery, a Nexus node uses the Area Service Reg-
ister (ASR). This service is a directory to the available local context models and it stores
the address of each corresponding context server, its object types and its extent. More
details about the federation tier can be found in [31].

Additional Services. In addition to the query functionality, every Nexus node sup-
ports value-added services. They use the federated context model to implement ad-
vanced services having their own interface. In Fig. 5, you can see three different value-
added services of the Nexus platform: The map service renders maps based on a select-
ed area. The navigation service computes multi-modal navigation routes across the bor-
ders of local context models. With GeoCast, you can port a message to a geographically
addressed area to be sent to every mobile application that is currently in this region.

Fig. 5 Nexus Architecture

Navigation
ServiceArea

Service
Register

Context
Server

Map
Service

Query
Comp.

Application BApplication A

Context
Server

Context
Server

register

query

query notification

service
tier

Geo
Cast

Nexus
Node

Event
Service

application
tier

federation
tier

register
notification

Navigation
ServiceArea

Service
Register

Context
Server

Map
Service

Query
Comp.

Application BApplication A

Context
Server

Context
Server

register

query

query notification

service
tier

Geo
Cast

Nexus
Node

Event
Service

application
tier

federation
tier

register
notification

Federating Location-Based Data Services 31

Information Access. A context-aware application can use the Nexus platform in
three different ways:

• Pull Mode. An application can send queries to the federation to get all kind of infor-
mation about its surrounding including infrastructure, points of interest (POIs), mo-
bile objects (friend finder) and so on.

• Push Mode. An application can register to the Event Service [5] to get a notification
when a certain state in the world models occurs, e.g., the user has entered a building,
the temperature in a room exceeds a certain value, or two persons meet.

• Value Added Services. An application can use value added services like the map ser-
vice or the navigation service to shift basic functions into the infrastructure of the
platform.

5.3 The Nexus Platform as a SOA

The Nexus platform contains service consumers and service providers. The federation
and value added services can use data providers as service providers, while they are
used as service providers by the clients and client applications.

The components of our platform offer a small set of interfaces. Service providers
like the federation and the data providers offer the AWQL query language and the
AWML data exchange format. In addition, interface definitions for event registration
and notification, and for value-added services exist.

The message schema of AWQL and AWML is extensible in such a way, that the
underlying global schema is extensible by every data provider, i.e., the message vocab-
ulary of AWQL and AWML can be extended. For some types of value added services
(like navigation services or map services) message definitions are predefined. New
types of value added services have to define new message formats.

We designed the Nexus platform as a SOA to exploit the benefits a SOA provides.
A SOA offers flexible distribution of functionality to different components and easiness
of migrating functionality from clients or applications to federation and service tier,
e.g., the introduction of new value-added services. Furthermore, the SOA design sup-
ports scalability.

6 Conclusion

Location-based systems, same as location-based services, are the special case of con-
text-aware systems that have been implemented in commercial systems and are thus al-
ready broadly available. Such systems adapt their behavior to the spatial context of the
user, e.g., by providing local maps or navigational information. They rely on spatial
data that has previously been gathered and preprocessed to fit their needs. Typically,
spatial data is fused with traditional information from databases or web pages, augment-
ed with a spatial reference, to form what is called the context model.

32 Bernhard Mitschang et al.

Large-scale location-based systems have to cope efficiently with different types of
data (mostly spatial or conventional). Each type poses its own requirements to the data
server that is responsible for management and provisioning of the data. In addition to
efficiency, it is overly important to provide for a combined and integrated usage of that
data by the applications. Since, for example, interactive or personalized maps and other
navigational information is computed from that kind of data, it is the most valuable and
largest part of the context model for location-based systems.

In this paper we discussed various basic technologies to achieve a flexible, extensi-
ble, and scalable management of the context model and its data organized and managed
by the different data servers. In the context of the Nexus project, we developed an open
platform as a federation of location-based data servers organized in a service-oriented
architecture.

Currently, extensibility is the concept in our focus:

• We have already implemented a set of different location-based data servers to adapt
to the special needs of different types of data [18]. Also we have integrated existing
data sources through wrappers [25] or crawling [22]. This shows the extensibility of
our approach regarding the integration of legacy data sources.

• Although we impose a global schema, our approach allows for extensions to this
schema in order to accommodate for local extensions of the context model that link
to existing concepts through inheritance. For increased interoperability several pro-
viders could agree on the extension. Still, existing applications not knowing the ex-
tension can make use of the new data, because the Nexus platform provides semantic
translations using generalizations.

• We support the dynamic configuration of data servers through a local-as-view-based
integration approach in the federation component with the help of the Area Service
Register. This way, data sources may enter and leave the system during run time
without requiring changes in existing applications.

• Value-added services extend the basic query functions of the platform. They allow
to run application-specific functionality in the infrastructure. The two main benefits
of this approach are to utilize a very efficient access to the global context model for
the value-added services and to disburden the mobile devices from complex compu-
tations.

Such extensibility features are key for the success of large-scale context-aware systems.
They allow this system to be an open global platform like the web. Both applications
and service providers may benefit from this approach: new applications may use exist-
ing data, and new providers may offer their data to existing applications.

7 Acknowledgments

The Nexus project was funded 1999-2002 by the German Research Association (DFG)
under grant 200989 and is now continued as Center of Excellence (SFB) 627.

Federating Location-Based Data Services 33

References

[1] Abowd, G.; Atkeson, C.; Hong, J.; Long, S.; Kooper, R.; Pinkerton, M.: A mobile context-
aware tour guide. Wireless Networks 3 (5), pp. 421-433, 1997.

[2] Barry, Douglas K.: Web Services and Service-Oriented Architectures. Morgan Kaufmann
Publishers, 2003.

[3] Bauer, M., Becker, C., Hähner, J., and Schiele, G.: ContextCube—providing context infor-
mation ubiquitously. Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops (ICDCS 2003), 2003.

[4] Bauer, M.; Jendoubi, L.; Siemoneit, O.: Smart Factory—Mobile Computing in Production
Environments. Proceedings of the MobiSys 2004, Workshop on Applications of Mobile
Embedded Systems, 2004.

[5] Bauer, M., Rothermel, K.: How to Observe Real-World Events through a Distributed
World Model. Proceedings of the 10th International Conference on Parallel and Distribut-
ed Systems (ICPADS 2004), Newport Beach, California, 2004.

[6] Becker, Christian; Nicklas, Daniela: Where do spatial context-models end and where do
ontologies start? A proposal of a combined approach. Indulska, Jadwiga; De Roure, David
(Eds.): Proceedings of the First International Workshop on Advanced Context Modelling,
Reasoning and Management. In conjunction with UbiComp 2004.

[7] Bilke, A.; Naumann, F.: Schema Matching using Duplicates. Proceedings of the 21st In-
ternational Conference on Data Engineering (ICDE 2005), Tokyo, Japan, April 5-8, 2005.

[8] Busse, S.; Kutsche, R.-D.; Leser, U.; Weber, H.: Federated Information Systems: Con-
cepts, Terminology and Architectures. Forschungsberichte des Fachbereichs Informatik
Nr. 99-9, TU Berlin, April 1999.

[9] Cheverst, K.; Davies, N.; Mitchell, K.; Friday, A.; Efstratiou, C.: Developing a Context-
aware Electronic Tourist Guide: Some Issues and Experiences. Proceedings of the Confer-
ence on Human Factors in Computing Systems CHI 2000, Netherlands, 2000.

[10] Conner, W. S.; Krishnamurthy, L.; Want, R.: Making Everyday Life Easier Using Dense
Sensor Networks. Proceedings of UBICOMP 2001, Atlanta, USA, 2001.

[11] Cooltown, http://www.cooltown.com/cooltownhome/index.asp
[12] Devogele, T.: A New Merging Process for Data Integration Based on the Discrete Fréchet

Distance. Proceedings of the Joint International Symposium on Geospatial Theory,
Processing and Applications, Ottawa, Canada, 2002.

[13] Dublin Core Metadata Initiative: DCMI Metadata Terms.
http://dublincore.org/documents/dcmi-terms/

[14] European Petroleum Survey Group (EPSG) Geodesy Parameters V 6.3.
http://www.epsg.org/

[15] Frank, A. U.: Ontology for Spatio-Temporal Databases. M. Koubarakis et al. (Eds.): Spa-
tio-Temporal Databases—The CHOROCHRONOS Approach. Lecture Notes in Compu-
ter Science, Springer 2003.

[16] Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.; Rajaraman, A.; Sagiv, Y.; Ullman,
J.D.; Vassalos, V.; Widom, J.: The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems 8(2), pp. 117-132, 1997.

[17] Google Local Search, http://local.google.com

34 Bernhard Mitschang et al.

[18] Grossmann, M., Bauer, M., Hönle, N., Käppeler, U., Nicklas, D., Schwarz, T.: Efficiently
Managing Context Information for Large-scale Scenarios. Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications PerCom, 2005.
(to appear)

[19] Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), pp. 270-
294, 2001.

[20] Hightower, J.; Brumitt, B.; Borriello, G.: The Location Stack: A Layered Model for Loca-
tion in Ubiquitous Computing. IEEE Workshop on Mobile Computing Systems and Ap-
plications, 2002.

[21] Imielinski, T.; Badrinath, B. R.: Mobile wireless computing: Challenges in data manage-
ment, Communications of the ACM, Vol. 37, No. 10, October 1994.

[22] Jakob, M., Grossmann, M., Hönle, N., Nicklas, D.: DCbot: Exploring the Web as Value-
added Service for Location-based Applications. Proceedings of the 21st International Con-
ference on Data Engineering, ICDE 2005, Tokyo, Japan, April 5-8, 2005. (to appear)

[23] Jakob, M., Grossmann, M., Nicklas, D., Mitschang, B.: DCbot: Finding Spatial Informa-
tion on the Web. Proceedings of the 10th International Conference on Database Systems
for Advanced Applications DASFAA, Beijing, China, 2005. (to appear)

[24] Kidd, C., Orr, R., Abowd, G., Atkeson, C., Essa, I., MacIntyre,B., Mynatt, E.,Starner, T.,
Newstetter, W.: The Aware Home: A Living Laboratory for Ubiquitous Computing Re-
search. Proceedings of 2nd International Workshop on Cooperative Buildings—CoBuild,
1999.

[25] Lehmann, O.; Bauer, M.; Becker, C.; Nicklas, D.: From Home to World—Supporting Con-
text-aware Applications through World Models. Proceedings of the Second IEEE Interna-
tional Conference on Pervasive Computing and Communications PerCom, 2004.

[26] Leonhardi, A., Kubach, U., Rothermel, K.: Virtual Information Towers—A metaphor for
intuitive, location-aware information access in a mobile environment. Proceedings of
Third International Symposium on Wearable Computers, 1999.

[27] Leonhardi, A., Rothermel, K.: Architecture of a Large scale Location Service. Proceedings
of the 22nd International Conference on Distributed Computing Systems (ICDCS 2002),
Vienna, Austria, pp. 465-466, 2002.

[28] Levy, A.Y.; Rajaraman, A.; Ordille, J.J.: Querying Heterogeneous Information Sources
Using Source Descriptions. Proceedings of 22th International Conference on Very Large
Data Bases, VLDB'96, September 3-6, 1996.

[29] Miller, R.J.; Hernández, M.A.; Haas, L.M.; Yan, L.; Ho, C.T.H.; Fagin, R.; Pope, L.: The
Clio Project: Managing Heterogeneity. SIGMOD Rec. Vol. 30 Nr. 1, ACM Press, 2001.

[30] Nicklas, Daniela et al: Final Report of Design Workshop. Universität Stuttgart: Center of
Excellence 627 (Nexus: Umgebungsmodelle für mobile kontextbezogene Systeme),
Fakultätsbericht Nr. 2000/08, 2000.

[31] Nicklas, D., Grossmann, M., Schwarz, T., Volz, S., and Mitschang, B.: A model-based,
open architecture for mobile, spatially aware applications. Proceedings of the 7th Interna-
tional Symposium on Spatial and Temporal Databases, SSTD 2001.

[32] Nicklas, D., Hönle, N., Moltenbrey, M., Mitschang, B.: Design and Implementation Issues
for Explorative Location-based Applications: the NexusRallye. Cirano Iochpe, Gilberto
Camara (Eds.): Proceedings for the VI Brazilian Symposium on GeoInformatics: GeoInfo
2004; November 22-24, 2004.

Federating Location-Based Data Services 35

[33] Nicklas, D.; Mitschang, B.: On building location aware applications using an open plat-
form based on the NEXUS Augmented World Model. In: Software and Systems Modeling,
2004.

[34] Nicklas, D.; Pfisterer, C.; Mitschang, B.: Towards Location-based Games. Loo Wai Sing,
Alfred; Wan Hak Man; Wong Wai; Tse Ning, Cyril (Eds.): Proceedings of the Internation-
al Conference on Applications and Development of Computer Games in the 21st Century:
ADCOG 21; Hongkong Special Administrative Region, China, November 22-23, 2001.

[35] Pascoe, J.: The Stick-e Note Architecture: Extending the Interface Beyond the User. Pro-
ceedings of the International Conference on Intelligent User Interfaces. Moore, J., Ed-
monds, E., and Puerta, A. (Eds.), pp. 261-264, 1997.

[36] Patel, S., and Abowd, G.: The ContextCam: Automated Point of Capture Video Annota-
tion. Nigel Davies, Elizabeth Mynatt, and Itiro Siio (Eds.), Proceedings of the 6th Interna-
tional Conference on Ubiquitous Computing (UbiComp), Lecture Notes in Computer Sci-
ence, Springer, 2004.

[37] Randell, D. A.; Cohn, A. G.: Modelling Topological and Metrical Properties in Physical
Processes. Proceedings of the First International Conference on the Principles of Knowl-
edge Representation and Reasoning Processes, 1989.

[38] Salber, D.; Dey, A.; Abowd, G.: The Context Toolkit: Aiding the Development of Context-
Enabled Applications. Proceedings of the Conference on Human Factors in Computing
Systems CHI, 1999.

[39] Schilit, B.N.; Adams, N.; Want, R.: Context-Aware Computing Applications. IEEE Work-
shop on Mobile Computing Systems and Applications, 1994.

[40] Schmidt, A.; Takaluoma, A.; Mäntyjärvi, J.: Context-aware telephony over WAP. Person-
al Technologies 4 (4), pp. 225-229, 2000.

[41] Schwarz, T.; Hönle, N.; Grossmann, M.; Nicklas, D.; Mitschang, B.: Efficient Domain-
Specific Information Integration in Nexus. Workshop on Information Integration on the
Web, at VLDB 2004. http://cips.eas.asu.edu/iiweb-proceedings.html

[42] Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The Geometry of Uncertainty in
Moving Objects Databases. Proceedings of the 8th International Conference on Extending
Database Technology (EDBT), 2002.

[43] Volz, S., Bofinger, J. M.: Integration of Spatial Data within a Generic Platform for Loca-
tion-Based Applications. Proceedings of the Joint International Symposium on Geospatial
Theory, Processing and Applications, Ottawa, Canada, 2002.

[44] World Geodetic System 1984, http://www.wgs84.com/
[45] Xiong, D.; Sperling, J.: Semiautomated matching for network database integration. ISPRS

Journal of Photogrammetry and Remote Sensing 59(1-2), Special Issue on Advanced
Techniques for Analysis of Geo-spatial Data, pp. 35-46, August 2004.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 37-47, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Agent-Based Approach

to Correctness in Databases

Herbert Stoyan, Stefan Mandl, Sebastian Schmidt, Mario Vogel

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
{hstoyan, stefan.mandl, sebastian.schmidt, mario.vogel}@informatik.uni-erlangen.de

Abstract. When defining the schema of a relational database, integrity con-
straints are included to describe simple syntactic constraints of correctness
that can easily be tested in a centralized way when tuples are inserted, deleted
or updated. Complex dependencies may exist between different tuples of a
relation. The description of them can be difficult with current formalisms. An
example for such an inconsistency is the problem of duplicates, the existence
of different tuples describing the same real world entity. Duplicates can occur
when one makes typographic or other errors while transferring the represen-
tation of a real-world entity to the database. In this paper, we describe a new
method to detect dependencies of that kind using continuously active agents
that check consistency of a database and propose steps to improve the content
of the database.

1 Introduction

Consistency plays an important role in the database literature [2], e.g., it is discussed
how to ensure that transactions realize the transition from a consistent database state to
another. If a transaction fails, obeying the principle of ACID at least guarantees a roll-
back to the last known consistent state. There is consensus to centrally organize control
of consistency in the DBMS.

Integrity constraints are classified into static and dynamic constraints. The latter re-
strict permitted updates (the dead cannot become alive again), the former restrict sets of
tuples by constraining singular tuples by relations between some attributes or by claim-
ing relationships between the database relations.

The question is then how to achieve on the basis of integrity constraints the goals
of consistency (free of contradictions), data uniqueness, completeness and semantic
correctness—under central control. One may move it to the database administrator (or
schema designer): He has to formulate the right integrity constrains. At present, typical
integrity constraints give restrictions of value sets or enumerate permitted values. A
schema designer often can not formulate the right constraints at design time, because
usually the complex ones evolve when the database fills.

38 Herbert Stoyan et al.

Using this, input will be denied if it violates these constraints. This might be a good
principle for a database with qualified input personal.

2 The Problem, Preliminaries

Let us define the content of a tuple to be a statement about the existence of an entity
with some properties or a statement about relationships between some entities. If so, a
database is a set of representations of such statements. The schema of a database spec-
ifies the formal structure of the representation of those statements of existence and of
relationship. The statements, i.e. the tuples, are constrained by the definition of the da-
tabase schema. They must be of a certain structure to be acceptable by a relation. Enti-
ties of the real world—similar to the statements—cannot be stored, but only represent-
ed. Those representations are made up of numbers, enumerations, strings and referenc-
es. Computers can operate on various ways on numbers and have a contentful
comparison facility.

Strings are less flexible: The only comparisons are equality or difference, an oper-
ation is the concatenation—both are weakly related to the representation function of the
strings. For references the comparison of identity is sufficient. References relate to oth-
er statements of existence which can be regarded of being representations of the entity
of which the existence is stated.

Generally, databases should contain only (representations of) statements of exist-
ence and relationship that are true, although it might be possible to store only false state-
ments for special applications. At a meta-level, false statements are also true: the state-
ment x has been made, but is false. If a database contains only representations of true
statements, we call it “absolute correctness”.

Because databases usually contain thousands or even millions of such representa-
tions (records) striving for absolute correctness is very hard.

Errors have two causes: The representation of a statement relates to a false or a
pointless statement. If the original statement was pointless or false already or if the rep-
resentation failed is unimportant. For our scenario of a community collecting a data set,
the latter could be interesting: If several members of the community want to add the
same statement the result may be a set of representations: several correct, some false,
and some pointless.

Dates of events are typical content of databases. If only exact data are stored, there
could be a global consistency check for a date.

Pointless statements like the “X was born 30th February” could be detected this
way. But if date approximations or incomplete dates matter the only alternative may be
a string representation. If historical dates are to be represented, aberrations from the cur-
rent Gregorian calendar might obscure the data correctness. So, date descriptions of the
“6.Trecember” or “190a|1908” (as an alternative of years) may occur. To exclude such
strings from being stored in the date field is much more difficult. The integrity con-
straints have to enable the definition of a date syntax grammar, which is beyond the cur-
rent possibilities.

An Agent-Based Approach to Correctness in Databases 39

Simple cases of pointless statements due to syntactic errors can be easily detected.
More complex ones need extended means of description.

Simply false statements are a hard problem. Imagine the erroneous permutation of
two digits in a date leading to the statement that Germany capitulated Word War II on
5/8/1954. In our scenario of the user community it might be found because different us-
ers key in the very same event for different dates. By checking for duplicates such ab-
errations may be detected. If groups of events can be constructed the false date might
lead to representations of WWII which last till 1954 and exhibit the error. In other
words, if data remains singular and unrelated a wrong tuple might never be detected. If
many operations include it and operate on it, it will not survive for long.

Referential integrity can be checked without any knowledge of the domain. In this
case, the string comparison might be completely sufficient. If one wants to create a new
record but does not know the value of an attribute that must be filled, it makes a differ-
ence if this attribute is part of the primary key. Let us assume we want to create a new
employee record and we do not know the date of birth that is mandatory for calculating
his income. Is it really necessary for the database system to reject this record? One could
and probably will work around this problem by specifying a dummy value for that
data—no one can hinder users to do so. In such cases a regular completeness test would
be a good thing: Reminding the database administrator of problems to be solved. If the
name of the employee is not the primary key alone because of common names like Hans
Müller, the primary key may consist of name and birth date. Now the dummy value will
conflict with the uniqueness constraint of primary keys.

Beside the local correctness of an attribute value (which has impact on the state-
ment's semantics) there are also dependencies between several attributes of a tuple. An
employee living in the state of Bavaria cannot have a zip code starting with 0 or 1. There
are relations between attributes of a tuple starting with simple functional dependencies
(date of birth determines the age of a person—if still alive) to complex constraints.
Complex constraints often cannot be described by sets of valid values or pure syntactic
constraints. For those complex constraints current database systems hardly offer any so-
lutions.

There are even problems not triggered by a single tuple but by the existence of sev-
eral interrelated tuples. Imagine a bill of materials which represents products and their
parts. All parts which are reachable by chains of part-of relations starting with some
module are part of this module. It is an error if a part has a weight which is larger than
the weight of the module.

Regarding a relation a database, it has to obey the principle of uniqueness: all stored
tuples must be distinct. Checking for uniqueness is easy if the attributes are numbers or
of enumeration type. If strings come into account, and considering typing and similar
errors, it is obvious that this is a hard and common problem: the duplicate problem.
Some easy instances of this problem may be dealt with by strategies that rely on syn-
tactic properties only (as described in [3]). Apart from semantic issues, duplicate entries
even affect the database technically: if references between (primary key and foreign
key) records are made and distinct tuples exist that should have the same key, the ref-

40 Herbert Stoyan et al.

erence must fail. This fact is due to the integrity constraints of primary keys: each pri-
mary key must be distinct.

Database research realized this problem early and developed possible solutions.
The first one was to define data types and attribute domains in the schema before intra-
relational and inter-relational dependencies were addressed. Integrity constrains are
permitted to be very complex and include even access to the database itself. These
means are not good enough for complex string syntax: syntactic specification of correct
attributes is necessary.

If the database is instrumented by flexible formalisms to describe incorrect string
attributes, the approach of rejecting incorrect statements is another obstacle. There are
many applications, where the quality of the database can be stepwise enhanced if the
tuples are existing.

A next important issue is time: A user inserting a new statement does not want to
compare all candidates for duplicates. He wants to accomplish his input job as fast as
possible. Often, the correctness of tuples cannot be checked in isolation but after a
group of inputs has been made. A simple rejection scheme would fail. Afterwards the
user will concentrate on correctness issues. Related to our community of input personal
it is the database administrator who accepts their input first and later presents the cor-
rectness problems. Of course, this strategy can be dangerous: people with the intention
to fill the database with messy data could destroy the whole system.

3 The WW-Person Database

WW-Person is a database of historic persons belonging to higher European nobility [4].
It was designed at the chair of Artificial Intelligence to have a testbed for knowledge
acquisition and text mining. The database consists of two relations: a Person relation
describing people by name, life dates and locations, titles; a Family relation describing
families by parents, children and marriage data.

Sources of the database are historic documents (charters, deeds, instruments).
These documents often contradict each other. Tuples in the database therefore are not
representations of statements about the real age or descent of a person but statements
about the content of sources.

Therefore, each person tuple contains a list of used sources. These are easily verifi-
able by checking the original sources. Failed representation may occur due to typo-
graphic errors or mistakes during interpretation, some of the former can be handled by
standard means of modern database systems. On the other hand, the sources post state-
ments about historic persons that might be true or false. In this respect, the sources
which are lists of such statements can be understood as a kind of database—as far as our
discussion of correctness is concerned.

Only a small part of them is really absolutely correct.A good part of the errors can
be detected because of the simplicity of the application domain: unknown locations,
wrong dates, wrong association of children to parents if all life dates are known. If an
error is detected in a source, actualization of the database is not strictly necessary—be-

An Agent-Based Approach to Correctness in Databases 41

cause of the possible correct mapping between the source and the database. Such a de-
tection may trigger the search for a better source. While syntactic errors in dates are de-
tectable, errors in names of people and places are hard to find. A list of town and village
names could be used for the latter problem—the places must have existed and named in
some way. Names of people are much harder.

First names for example are differently managed in various European countries.
Italian and French first names are fully standardized, while German first names are
more freestyle—any spelling might be correct.

Striving for correctness in WW-Person therefore comprises two subtasks: finding
errors in the representation of sources and finding errors in the content of sources. Be-
cause the sources are in average reliable we use the following heuristics: the sources are
assumed to be correct statements about the historic world. All possible errors are as-
signed to the database. Only in special cases the sources are responsible.

A difficulty makes it impossible to use enumeration types and special types for
dates: In many cases the sources report assumptions or guesses, especially for dates.
Therefore, the date description language has to cover vague and incomplete dates: dates
with unknown parts (days, month or years), alternatives and/or intervals.

3.1 Incorrect Attribute Values

Errors of this kind are local erroneous within a tuple. These errors can be further broken
down:

1. An attribute value can be syntactic erroneous.
2. An attribute value is not blatantly syntactic erroneous, but extremely unusual
3. An attribute value is neither syntactic erroneous nor unusual, but nevertheless

wrong (often errors of this kind can never be corrected).
Example:

3.2 Intra-relational Incorrectness

Errors of this kind are inconsistent combinations of attribute values within a tuple.
There may be dependencies between attribute values of a tuple that can result in errors,
e.g., the date of birth of a person must always be before the date of death (1.1.1900 as
birthday and 31.12.1800 as date of death).

Class synt. erroneous unusual erroneous concerning content
Date: Munich 30.2.1897 or

12.12.2006
1.4.1900 (instead of 1.5.1900)

First Name FvP Müller Hans (instead of Heinrich)
Name: Scordi> Sqrzt Meier (instead of Müller)
Ort: 2.3.1950 plane crash Munich (instead of Stuttgart)
Relationship @Fga1aa @Fga1aa@ statt @Fga1ab@

42 Herbert Stoyan et al.

3.3 Inter-relational Incorrectness

The third kind of errors may occur when considering different tuples of one or more re-
lations. These can be further broken down into:

1. Inconsistent redundancy: The date of marriage can differ when it is stored for
both persons (e.g., if multiple documents describe the same marriage differently).

2. Inheritance of properties: The date of birth of children must be before the date of
death of their mother (and before arbitrary ancestors but the father).

3. Cyclic relationships: Descendants of an individual are also its ancestors. Finding
errors in such cycles is hard, because the error must not necessarily be found in
the record that rises the cycle. Any record which is part of the cycle can be erro-
neous.

4. Duplicates: Duplicates are records of the database that describe the same individ-
ual of the real world. Typically they occur when names are differently written in
sources about the same person. Of course, there must only be one record for each
person. Each duplicate has its own net of ancestors and descendants. Only when
merging the different nets, the correct relationships arise. An example of a dupli-
cate is:

5. Problems of context: Because of the context of an individual (its relationships)
some pieces of data seem questionable. In a succession of titles of nobility one
can conclude the title of descendants by analyzing the titles of ancestors (by also
considering marriages). If those deducted titles are absent, an error is probable.

4 Means of Databases: Constraints and Triggers

Current databases offer two facilities to work for correctness: constraints and triggers.
Whereas the first is directly introduced for this purpose, the latter is a general facility
which can be used for our purpose [1].

4.1 Constraints

The database schema containing definitions of tables and their relationships defines val-
id states of the data base. Attributes are constrained by their data types. Because data
types do not constrain attribute values enough, the SQL standard defines further restric-
tions.

Name: Clementia de
Montfaucon

Clementia
v.Montfaucon

Gender: f f
Death: after 1160
Marriage: before 1162

An Agent-Based Approach to Correctness in Databases 43

These restrictions scope columns, rows and relations. They are restrictions which
tuples have to fulfill to be admissible tuples of a relation.

Constraints on tables are defined when creating the table. Providing a boolean ex-
pression as integrity constraint (CHECK clause) ensures that only tuples will be insert-
ed or updated that evaluate this expression to true. Adding constraints to a table after
table creation is possible only when all records of that table are compliant with the con-
straint.

The dynamic constraints are not very interesting for WW-Person. There are no
fixed rules for updating. Let us consider an example with tables Person (persid, first-
name, ..., birthdate, deathdate, parents, family) and Family (famid, father, mother,
child). The attributes parents and family are foreign keys for the primary key famid and
refer to the parent and the own family, respectively. If we assume that the Person rela-
tion contains 4-digit integers for years, a constraint for the birthdate–deathdate relation-
ship could be:

birthdate numeric(4) check (birthdate < (
select deathdate
from Family f, Person p
where Person.parents = f.famid

and f.mother = p.persid)).

4.2 Triggers

Triggers are functions which react on events and execute some action sequence. Data-
bases implementing triggers are called Active Databases [6]. The definition of a trigger
consist of three parts:

The first part defines the event the trigger will be activated (before insert, after up-
date, ...), the second part defines the condition that must be met for the trigger to execute
the action described by the third part. For WW-Person, only AFTER-INSERT triggers
are interesting. This would enable the output of warnings, if some conspicuous data are
input. French first names, for example, could be compared with entries in a pre-com-
piled list of common names (Frenchnames). If an unknown name is detected, a warning
is issued.

create trigger namecheck
after insert on Person
for each row
when firstname is not null and not exists

(select * from Frenchnames
 where entry = firstname)

begin atomic
MailNotaCommonName(firstname);

end

44 Herbert Stoyan et al.

4.3 Problems with Constraints and Triggers

Main problem of both means from the viewpoint of WW-Person is the weak condition
syntax of SQL. Strings can be equal or different. This is fine for standardized first
names but very cumbersome for checking rules of a grammar (for vague dates).

Constraints will hinder a new tuple to be inserted if it does not satisfy the rules. BE-
FORE-INSERT triggers could be used to implement the same behavior. AFTER-IN-
SERT triggers are more acceptable if the new tuple has some information content. Dis-
missal of tuples that do not conform with the highest quality scheme is not always the
best strategy.

Triggers and constraints are activated on pre-defined events. If such an event does
not occur, the trigger does not become active. If warnings for conspicuous tuples are
issued remedy may be forgotten. A regularly activated tuple scanner would be an im-
portant additional feature. This is something which is similar to our agents.

5 An Agent-Based Approach

When concerned with correctness of databases, we suggest to use software agents act-
ing in concert with standard database mechanisms.

Our main idea is to gradually improve possibly incorrect data in the database by
long-running processes as it is unlikely that general correctness problems in databases
can be solved by simple and short-running procedures.

The previous section mentions the fact that expert domain knowledge is inevitable
for handling complex correctness problems. This kind of knowledge may not be acces-
sible when developing the schema of a database and the expert knowledge may not be
easy to formalize in unambiguous simple rules. Even when candidates for possibly in-
correct records are identified by a program, the ultimate decision has often to be made
by a human.

Section 3.3 presented the problem of duplicates that, while it is easy to describe, is
impossible to solve without a large amount of domain knowledge.

To bring that domain knowledge into the system, we use software agents. Accord-
ing to [7], software agents have the following properties:

• reactivity: agents sense their environment and the changes in the environment and
react according to their goals. In the Person database there are three different kinds
of change: 1) new records are added to the database, 2) new agents with new services
are added or outdated agents are removed, and 3) the user interacts with the system.

• pro-activeness: agents have goals and act in order to realize them without being
called by others. In our example, agents only have a few goals and most agents wait
for task assignments from other agents. When the complexity of our application ris-
es, the property of pro-activeness will gain more importance for us.

• social ability: agents communicate with agents and users.

An Agent-Based Approach to Correctness in Databases 45

When approaching problems of correctness in WW-Person, agents offer all the pos-
sibilities of triggers and constraints. But agents are even more powerful:

• Agents query and use services of other agents explicitly, while triggers can only in-
teract implicitly.

• Agents may be added to or removed from the running system at any time. As long as
a certain critical service is offered by at least one agent, the system remains working.
Even if such a crucial service is not available for some time, as soon as it is brought
back (for example after a short debugging session), the whole system continues to
operate. This property is crucial for the design goal of a gradually improving system.

• Agents do not have to be passive. When an important data entry is found, it does not
have to wait until asked for its contribution. Instead, it may very well present its im-
portant result without being queried explicitly.

• For very large data corpuses with tangled interdependencies, it is better to have
agents that work in the background and do not interfere with the user too much. How
and why agents interact with the user is easy to customize.

• There may be decisions that can only be made when having specific data. When this
data is not accessible in the present environment, mobile agents may migrate to the
place of the data that they need to make their decision.

Additionally, we claim that agents should not be too powerful. When a new kind of
specification for uncertainty in dates has been observed, it should be possible to make
it available to the system by starting a new agent. When agents are too large and pow-
erful, we would need a specialized protocol to update those. Therefore, we suggest that
an agent should be expert for only one task.

In contrast to classic function calls, tasks in multi-agent systems are assigned dy-
namically. For this purpose, there exists a number of established protocols (see [5]). Our
approach uses a slightly modified version of the Contract Net Protocol. Whenever an
agent has produced some result, it expects to receive an evaluation of that result. When
that agent was using the results of other agents to do so and the evaluation was positive,
then the agent’s trust into its collaborators is increasing, otherwise it is decreasing. With
this sort of “learning by selection”, the system provides a certain robustness against
misbehaving agents, which—again—contributes to the goal of gradual improvement.

The actual source of improved agents is not predefined. The expert user is free to
extend the system to his needs. Alternatively, agents may provide powerful configura-
tion possibilities or a visual programming language could be used. Employing data min-
ing technology or evolutionary algorithms to create new agents is an interesting option.
We developed an agent to translate date specifications with uncertainties into a more
accessible form. If the agent encounters a date specification that is not covered by its
internal transformation rules, it asks the user to enter a regular expression for that date.

46 Herbert Stoyan et al.

6 Prototypical Implementation

The current implementation of the ideas outlined above is developed using the JADE
Agent Platform which in turn is implemented in Java.

According to JADE's pragmatics, we use the provided means of services and facil-
itators. Each agent registers itself for the services it provides. When an agent needs a
service, it queries the facilitator for the agents providing this service. This generaliza-
tion of standard procedure call allows the presence of multiple (different) implementa-
tions of a service at the same time. We want those service implementations that provide
better results for their users (which by transitivity is also the human user) to dominate
other implementations.

Service implementations that are of no use to others will silently fade away when
the system is running for a long time.

• UserAgent: This agent provides the user interface. It presents candidate duplicates
to the user and feeds back the user's response (identical/not identical/don't know) to
the agents that delivered the candidate.

• TupleProvider: Abstract agent providing the common functionality of all agents im-
plementing the tuple-provider service. Some of these agents cluster the person
records according to different strategies like name equality or nation equality. Upon
request, they provide pairs of person records. Each component record of such a pair
is from the same cluster. The use of TupleProvider agents allows for the easy inte-
gration of different data pre-processing strategies at the same time. Additionally,
new TupleProvider agents with different strategies can be started at any time while
the system is running.

• NameCompare: Abstract agent for comparing person names (name-compare ser-
vice). There exist several specializations that use specific comparison strategies;
each of them is offering the name-compare service.

• DateCompare: Abstract agent for comparing dates (date of birth and death, mar-
riage). There exists different implementations each using a different strategy. There
even is an interactive implementation that asks the user to provide a regular expres-
sion that maps parts of an unclassified date string to the day, month, and year of a
date structure.

• LocationCompare: An abstract agent that provides the common functionality for all
agents implementing the place-compare service. This agents currently do only string
comparison. In the future, we would like to see PlaceCompare-agents that use large
tables of known places. There is assumed to be a strong intra-relationship to the date
fields of a given person record, as places might have changed their names in the
course of time.

• PersonCompare: This agent and its specializations use the services provided by oth-
er agents to decide if two person records represent the same person. They use differ-
ent values to weight the results provided by the more specific compare agents. Also,
based on the feedback they receive for the result they produce, they propagate feed-

An Agent-Based Approach to Correctness in Databases 47

back to the agents they used to create the result. Additionally, they build up a trust-
table that shows the percentage of correct predictions of used agents.

• DuplicateFinder: Agents of this kind manage the quest for finding duplicate
records. They ruse the services of TupleProvider and PersonCompare agents and
communicate their results to UserAgent instances.

7 Conclusion

We described the problem of correctness of tuples in databases. Correctness is not a
concept that can be achieved by pure syntactic constraints. Whether or not tuples are
correct can only be decided by domain experts. The knowledge they use is often not ex-
pressible by deterministic rules, e.g., the problem of finding duplicates in the database
of historical persons. There are indications for a tuple to be a duplicate, whether or not
those indications hold can only be decided by an expert. Standard means of databases
do not offer any possibility to express such requirements. Therefore, we propose soft-
ware agents to be a centralized knowledge store that can pro-actively interact with a do-
main expert to gradually improve the content of the database. They are considered as a
disciplined way to bring even more application logic right into databases.

References

[1] Ceri, S., Cochrane, R., Widom, J.: Practical Applications of Triggers and Constraints:
Successes and Lingering Issues. Proceedings of the 26th VLDB Conference, Egypt, 254-
262, 2000

[2] Grefen, P.W.P.J., Apers, P.M.G.: Integrity control in relational database system: an over-
view. Data and Knowledge Engineering 10(2):187-223, 1993

[3] Monge, A., Elkan, C.: An Efficient Domain-Independent Algorithm for Detecting Approx-
imately Duplicate Database Records, Proc. of the Workshop on Research Issues on Data
Mining and Knowledge Discovery, Tucson, Arizona, 1997

[4] Stoyan, H.: Das Projekt WW-Person. Archiv für Familiengeschichtsforschung, Vol.1,
No.1, 1997

[5] Weiss, G. (Hrsg): Multiagent Systems. The MIT Press, 1999
[6] Widom, J.: The Starburst Active Database Rule System. IEEE Transactions on Knowledge

and Data Engineering 8(4):583-595, 1996
[7] Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The Knowledge

Engineering Review 10(2):115-152, 1995

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 51-65, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Thirty Years of Server Technology —

From Transaction Processing to Web

Services

Klaus Meyer-Wegener

Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
kmw@informatik.uni-erlangen.de

Abstract. Server technology started with transaction-processing systems in
the sixties. Database Management Systems (DBMS) soon adopted mecha-
nism like multi-process and multi-threading. In distributed systems, the re-
mote procedure call also needed process structures at the server side. The
same is true for file servers, object servers (CORBA), Web servers, applica-
tion servers, EJB containers, and Web Services. All these systems support a
request-response behavior, sometimes enhanced with a session concept.
They are facing thousands of requests per second and must manage thou-
sands of session contexts at the same time. While programming the applica-
tions that run on the servers and actually process the requests should be as
simple as possible, efficiency must still be very high. So a general program-
ming environment should be defined that is easy to use and, on the other
hand, allows for the efficient execution of thousands of program instances in
parallel. This contribution will identify mechanisms that have been devel-
oped in the context of transaction processing and database management. It
will then generalize them to server processing of any kind. This includes pro-
gram structures, context management, multi-tasking and multi-threading,
process structures, program management, naming, and transactions. The
driving force behind the discussion is to avoid the re-invention of the wheel
that far too often occurs in computer science, mostly in ignorance of older
and presumably outdated systems.

1 Introduction

Servers are ubiquitous today, and they can be quite small. The services they offer span
from remote procedure calls, HTTP requests, and application invocations to Web serv-
ices. New kinds of server software are being developed, often without knowing that the
history goes back into the sixties, when transaction-processing systems were created for
the first time. Who among the server implementers of today has ever heard of CICS,
CINCOM, DATACOM/DC, UTM, and all the other systems from that time? Most of

52 Klaus Meyer-Wegener

them have not, and the consequence is a repeated re-invention of the wheel. CICS is still
in operation today, but it has long been restricted to the domain of IBM mainframe com-
puters. These computers are not very well known among the developers of today. In
fact, some of them even refuse to learn about these systems. For them, the world of com-
puting is limited to Windows and Linux.

The purpose of this contribution is to identify the common techniques of all these
systems and to describe them in a neutral terminology. This should enable developers
of server software to pick from a well-established set of techniques. It also means to
identify the “invariants” needed in any kind of server—irrespective of the plethora of
names. It has been very hard to find names that are not occupied yet by any of the var-
ious servers, and it has not always been successful. In these cases, however, the differ-
ent meaning is stated explicitly.

2 Kinds of Servers

Transaction-processing systems, also called online transaction-processing (“OLTP”)
systems, are the oldest class of server systems, going back into the sixties. Typically,
they were airline reservation systems like the TWA reservation system [12] or banking
systems [5]. The first system to mention here is Sabre. The Brainy Encyclopedia de-
scribes it as follows: “Sabre (Semi-Automated Booking and Reservation Environment)
was the world's first online airline reservations system. Developed through the joint ef-
forts of IBM and American Airlines, it first went online in the fall of 1962, running on
an IBM 7090 computer. After going through a series of system upgrades, including a
relocation from Westchester County, NY to Tulsa, OK, the system remains operational
today (2003) and was the prototype for virtually every mainframe-based online system
that followed. Sabre was based on real-time computing advances made by the US Air
Force in the development of their SAGE radar-coordination and target tracking sys-
tem.”1

The notion of “transaction” here is not used in the sense of databases yet, but simply
names a processing step. While in the first approach systems were limited to single-step
transactions, they very soon progressed to multi-step transactions. Single-step transac-
tions are much easier—not surprisingly, Web servers also started with them before
cookies and other mechanisms were introduced. No context needs to be managed. If in-
formation from the last transaction was needed in the next, it had to be re-entered by the
user—the trick of including it invisibly in the next input message has been used very
early in these systems and is by no means an invention of Web-site developers.

The middleware that has been introduced for this is called a transaction-processing
monitor, or TP monitor for short [3, 8, 9]. These systems have rarely been investigated
in the scientific community, but they have—and still are—used extensively in commer-

1. http://www.brainyencyclopedia.com/encyclopedia/s/sa/
sabre_airline_reservations_system.html

Thirty Years of Server Technology 53

cial applications. The market leader is IBM’s Customer Information Control System
(CICS) [10, 16], but many others have been built.

In the development of operating systems or, more specifically, distributed systems,
file servers made an important contribution. Here, a file system on one network node
can be made accessible to other network nodes, so that they can “mount” it and after-
wards use is as if it were a local file system. Hence, the file server has to handle all the
file operations, i.e., open, close, read, write, etc. It also has to synchronize accesses to
the files, since now not only local processes compete for the files, but also other nodes.
The most prominent software for file servers is Sun Microsystem’s Network File Sys-
tem (NFS) [6]. In fact, it is rather a collection of protocols to be used by a client system
when accessing files on a server. There are many different implementations on a variety
of platforms. File structures and operations are much like UNIX. Up to version 3, NFS
has been stateless, so the server did not maintain any state for its clients. This has been
changed in version 4 to ease synchronization and fault tolerance. Another example is
the Andrew File System [7] and its descendant Coda [20]. The project’s Web page
states very concisely: “Coda is an advanced networked file system. It has been devel-
oped at CMU since 1987 by the systems group of M. Satyanarayanan in the SCS de-
partment.”2 The main difference from NFS is that very large numbers of workstations
may also be included with their files, and high availability is an explicit goal leading to
caching schemes that allow for disconnected operations.

RPC servers are even more elementary than file servers (in fact, NFS uses RPC in
its definition). A remote procedure call (RPC) serves the purpose to execute any kind
of subroutine (procedure) on a different network node. Instead of sending a message
and receiving a response, this is bundled in one operation which looks exactly like a lo-
cal procedure call. So for the client it is transparent whether the procedure is locally
available or on another machine. This significantly eases program development and
also allows for later optimizations, e.g., by migrating local procedures that turned out
to be a bottleneck to a stronger machine. The RPC is the prime mechanism of the so-
called “client-server operation.” It is stateless, i.e., once a procedure has been executed,
the server forgets about the client—which does not mean that the effects of the proce-
dure (e.g., entries in a database) are also forgotten, but these are out of the scope of the
RPC mechanism.

Database servers may also be viewed as RPC servers, with the processing of a que-
ry as the procedure. However, the specific nature of database processing has led to more
specific protocols and different server implementations. The notion of client-server da-
tabases has been introduced for sending operations of the data manipulation language
(DML) to a remote server. The most important DML today is SQL. Sybase was the first
manufacturer of a database management system who consequently defined the architec-
ture based on client-server operation. The transaction defines the context of the DML
calls issued by the clients, so the server cannot be stateless. The high performance re-
quirements have led to an early use of multi-process configurations and multi-tasking
in database servers.

2. http://www.coda.cs.cmu.edu/index.html

54 Klaus Meyer-Wegener

Another packaging of RPC servers has been introduced by Object servers. Here the
remote operations are grouped into interfaces of remote objects. This follows the trend
towards object-oriented programming and offers the same paradigm in the distributed
setting. The dominant frameworks in this domain are CORBA and DCOM [19]. The op-
erations—which now might be called methods—are still stateless. The server imple-
mentation is much like that of an RPC server.

The explosive dissemination of the World-wide Web (WWW) created a completely
new type of server with outstanding importance: the Web server [23]. It communicates
with its clients via the Hypertext Transfer Protocol (HTTP),which is based on TCP, and
which has only a few operations (or message types). The most important is the GET op-
eration that fetches a document from the server. Documents were initially coded in the
Hypertext Markup Language (HTML), an application of SGML. By now, they can in-
clude much more, even executable code. At the server side, documents used to be just
files, but now can be much more, too. Often, they are generated dynamically from var-
ious sources, including databases. In general, any application can be executed on the
server, and the output can then be wrapped with HTML to form a document. HTTP has
been designed as a stateless protocol. This has made it simple, but soon became a prob-
lem, because more and more applications were moved to the WWW, many of which
needed a sequence of requests and responses. Cookies and other mechanisms have been
introduced to cope with this problem. Server implementation has undergone many
changes. The first approach to call applications, the Common Gateway Interface (CGI),
was rather primitive and created a new process for each request. As this became a bot-
tleneck very soon, many other mechanisms have been introduced, e.g., FastCGI and
Servlets. Performance is more critical here because there may be billions of users. So
there is an ongoing pressure to increase throughput.

When using Web servers with calls to applications in the back, HTTP turned out to
be not very suitable. As an alternative, the Web server can be used only to locate the
application. Once it is identified, it establishes its own connection with the client, which
is then much faster and more appropriate. The server that hosts the applications next to
a Web server has been named Application server. It has much in common with the older
OLTP servers, but many developers did not know about the latter. It can also be an RPC
server or Object server.

One of the concepts for application servers received particular attention, namely
Enterprise JavaBeans (EJB) [17]. The reason may be twofold: First, the programming
language Java is very popular, and second, a concept for component software has been
introduced with it. The strong connection with Java is also one of the problems of this
approach, because the systems built are language-dependent (which is not the case with
the major competitor, Microsoft’s .NET). As the Java counterpart to the RPC, Remote
Method Invocation (RMI) is used. The server is visible to the application developer in
form of the EJB container. Its implementation is still under careful investigation. One
of the current dominant systems here is JBoss. The challenge is again to handle a large
number of requests simultaneously, even to the same operation of a single Java class.
Some implementations, e.g., IBM’s Web Sphere, internally used the well-established
techniques of their TP monitor, CICS.

Thirty Years of Server Technology 55

The most recent development for server access is named Web Services [1, 24]. It
uses the ubiquitous infrastructure of the WWW to link applications, namely as a frame-
work for component software. To achieve this, a set of conventions and interfaces is de-
fined so that any application can offer services—potentially to anybody in the WWW.
To call the service, SOAP (originally called Simple Object Access Protocol, but now
just used as a name, no longer an acronym) is used, which is essentially an RPC pack-
aged in XML. The Web Services Description Language (WSDL) allows to describe the
interfaces that must be used to access the services in a uniform way. Directory services
like UDDI help to find the proper service for a given task. Again, a server is needed to
handle the calls to a Web service—with many administrative tasks around it, and with
a potentially very large number of clients. This means a substantial difficulty with re-
spect to authentification and, based on it, authorization. Further standards are needed
here, e.g. the RosettaNet Implementation Framework (RNIF) [1]. Encryption must be
available. It is covered by WS-Security, an extension to SOAP, and again by RNIF.
WS-Security defines a SOAP header block (called “Security”) which can carry a signa-
ture. It also indicates how the Security block must be processed. The goal is to offer
end-to-end security where only parts of the SOAP messages are encrypted. And finally
transactions (in the more specific meaning used with databases; see Sect. 5.5 below) are
a challenge because of the heterogeneity of the participants. Since processes that use
Web Services may take much longer time than usual database applications, the well-
known ACID principle [15] is no longer suitable for them. The WS-Transaction proto-
cols [1] can be used here. They are defined on top of WS-Coordination, a set of proto-
cols to control sequences of service invocations in a particular order. WS-Transaction
includes protocols that enable all participating Web services to determine if any of them
has failed. Long-running activities are treated as Sagas, a well-known concept. Each
Web service is then executed as an ACID transaction, and if the whole activity fails,
compensation is executed. That means that for each participating Web service, a com-
pensation service must be defined. The long-running sagas are called “business activi-
ties,” while the standard ACID transactions—which are also available in WS-Transac-
tion—are called “atomic transactions.” Implementations of servers employ the availa-
ble techniques and base systems, e.g., TP monitors. Because this concepts is the
youngest, the optimization of servers is just beginning.

And certainly there are more servers with other tasks. It is not intended here to be
complete. The list is just to give an idea of how important a really elaborate server de-
sign and implementation is today.

3 A General Server Concept

The basic construct for any kind of server is the triplet of Request—Processing (Com-
putation)—Response (Result). As we have seen in the last section, many different pro-
tocols can be used for that: RPC, HTTP, RMI, and others. The communication between
client and server can be connection-oriented (e.g., TCP) or connection-less (UDP). This

56 Klaus Meyer-Wegener

makes a difference for fault tolerance, but not for the elementary processing of requests
by the server.

There is one important additional concept: that of a “session.” It is used when sub-
sequent requests from the same client have some dependencies. The server then must
maintain and use a so-called context. Processing a request terminates in either of two
different modes: The session also terminates, or the session continues with the next re-
quest, and hence an explicitly named context must be preserved. This concepts is re-
quested by many applications, but not all of the servers mentioned support it. However,
a general server concept must include it as well.

4 The Task

Given the general server concept including sessions, the task is now to identify the tech-
niques that make such a server efficient. It should be streamlined to handle thousands
of requests per second [2, 11], in the WWW environment maybe even millions. This
can lead to the management of thousands of contexts for the sessions.

The main decision is on the number of operating-system processes to be engaged
by the server. At one end, the whole server can run as just a single process. At the other,
a new process could be created for each incoming request (e.g., CGI). Both has actually
been used in early implementations, but neither of the two is optimal, as it soon turned
out. To find the right number and also the right task for each of the processes, one has
to know quite well the overhead involved in the management of processes and in the
process switch that occurs when one process enters a wait state.

On the other hand, programming the applications should be as simple as possible.
Obviously, there is a trade-off: The need for efficiency tends to make programming
more complex by adding constructs that have nothing to do with the application itself,
but just increase the efficiency (e.g., partitioning the application so it can run in separate
processes). But this slows down the development of the software and thus creates large
costs in a different setting.

Fortunately, a rather early idea allows to avoid this conflict here—as in so many
other areas of computer science: separate and generalize mechanisms that are only in-
vented for performance reasons. A proper interface is defined for application develop-
ers, and they just call some subroutines to care for efficiency. Today, the term “middle-
ware” is used for such libraries of subroutines. Examples are

– transaction-processing monitors (TPM’s),
– EJB Containers,
– dispatchers,
– …

Using them, the programmer is allowed to concentrate on the prime task of the applica-
tion, that is,

Thirty Years of Server Technology 57

– accept a request,
– process it, and
– send back a response containing the result.

Features and properties needed for efficiency but distracting from that prime task can
be some of the following:

– The context is treated different from other variables.
– Several cooperating programs must be written to perform a single processing step.
– The multiple parallel execution of the program must be considered and controlled

(e.g., by creating and managing “threads”).
– Access to shared files must explicitly be synchronized.

The goal, however, must be to free the programmer from all that. This is possible,
if the middleware is capable of handling it. Proper interfaces need to be developed.

5 Server Implementation

This section shows the creation of such a middleware step by step. How are programs
executed by the server? The simplest solution is shown in Fig. 1. Here, the server main-
tains the input queue of incoming requests. Each request identifies the program needed
to process it. This is done by a function name also called the “transaction code,” or TAC
for short. The server maps these names to programs. Program management is discussed
in more detail in a subsequent section. Here it is important to note that the programmer
is liberated from all the issues of processing many requests at the same time. Each pro-
gram processes exactly one request and simply terminates when this is done. In some
systems, the program must include a main loop that goes back to the beginning and then
waits for the next input. This is indicated by the arrow to the right of the program in Fig.
1. Such an approach is not optimal, however, because the program then blocks resourc-
es while waiting for the next request. It is more efficient to actually terminate the pro-
gram and restart it only when the next request arrives. The difference is that the server

Fig. 1 Elementary Server Operation

read

write

request server

response

58 Klaus Meyer-Wegener

now controls the resources. For instance, the program may remain in memory if enough
space is available, so restart will be quick. But no resources are blocked in case that no
request of this kind is present in the input queue and other programs must be executed.

When interaction with a user and thus a context are needed, the situation becomes
slightly more complex as shown in Fig. 2. A new operation is used here, namely “write-
read” (in some systems called “tandem-I/O”), which presents the intermediate result
and continues only when the user-based selection is received. This reflects the typical
situation that some input from the user is required before processing can go on.

The standard example where a session and consequently also a context are needed
is a request for a seat in a theatre or in an airplane. The intermediate result is then the
list of seats that are still available (maybe even a graphical display of them). The user
selects one or more seats, and the reservation can be completed.

This is certainly the simplest form of programming. The program processes one re-
quest at a time, and the context is maintained in the program itself in terms of local var-
iables. Unfortunately, this turns out to be very inefficient. Waiting times are not used,
and they are significant. A specific critical one involves the user, because “the human
is in the loop”: Once the intermediate result is displayed, seconds or even minutes may
pass until the selection is finally received.

Furthermore, other waiting times are hidden in the processing that takes place be-
tween “read” and “write.” When an input/output operation is executed by the program
or more general, when any kind of other server is called, the program again waits. This
might not be as long as in the case of user interaction, but still goes in the order of mil-
liseconds. The operating system certainly switches to another process, but the server is
deactivated.

The first improvement here leads to the separation of context from the other varia-
bles used by the program and to splitting the program into two sections. It is done to
reduce the utilization of resources while waiting for the user’s response. As shown in
Fig. 3, the program now terminates together with sending the intermediate result. This
requires a new operation that might be called “write-exit” (to avoid a reference to any
particular system). The operation also identifies the program (part) to be executed when
the selection arrives. This second program is written to perform the second step of the

Fig. 2 Server Operation with Session

read

write

request server

result

write
read

intermediate result
selection

Thirty Years of Server Technology 59

session and thus accepts the context from the server software before reading the selec-
tion message.

Obviously, programming becomes more complex now. Instead of writing a single
program that has everything right at hand in its code, the programmer now has to write
two programs with some dependencies. They must perform a common task, and they
must agree on the structure of the context. If the session has more than two steps, even
more programs must be coordinated.

The second improvement addresses the internal waiting times that arise from input/
output or other server calls made by the programs. Here, multi-tasking is enabled to pro-
ceed with other sessions while one session is waiting. Fig. 4 sketches how the server op-
erates in this case. It must be informed of the fact that one program enters a waiting
state, which could again be done via the “write-exit” operation. The server would then
pick the next request from its input queue, identify the program to be executed for that
and start it. Assuming that this second program later also enters a waiting state and the
response for the first program has arrived in the meantime, the server would return to
the first session and would start the program that has been identified to it in the previous
“write-exit.” Because all waiting times are now exploited to proceed with the process-
ing of other requests, this approach is highly efficient and promises significant increase

Fig. 3 Separation of Program Parts and Session

readrequest server

response

intermediate result

selection
write

write

read
context

Fig. 4 Separation of Program Parts and Session

read

write-exit

read

write

read

write-exit

task 2

task 1

60 Klaus Meyer-Wegener

in throughput. However, the burden on the programmer is heavy, because again the pro-
grams are split in even smaller pieces with many interdependencies.

Starting from a very simple programming model where just one request must be
processed, a rather complex model is reached which promises some efficiency but, on
the other hand, makes programming really complex. This is not unusual in computer
science. One solution is to provide tools that perform the mapping from the simple mod-
el to the complex one. Another is to speed up the underlying system so that waiting
times are much shorter or even disappear. Of course, the users involved cannot be “ac-
celerated.”

5.1 Process Structures

In all the figures used so far, the server has been depicted as a single rectangle. This sug-
gests that it runs as a single process of the operating systems, which can in fact be the
case. Such an approach makes the development of the server software easier, because
it runs as a single program. On the other hand, the structure of this program becomes
very complex, because it handles the multi-tasking internally, manages all the contexts,
identifies and starts the application programs, etc. Also, this server must run with a very
high priority—if it is preempted by the operating system for any reason (page fault, end
of time slice), the whole server processing stops.

For these reasons, concepts of using more than one process for the server appeared
very soon. As an extreme, a new process could be created for each request, which would
make the server software surrounding an application program very small. CGI is an ex-
ample of this. However, the overhead created by the large number of processes and the
dynamics of creating and destroying them is prohibitive. The compromise lies in using
a few processes that share the work, in the order of tens to hundreds. This allows to run
only one application program in each process, because their waiting times can be used
to switch to other processes of the same server. Hence, the server software in such a
process remains simple. However, some complexity must be added to transfer contexts
among these processes, because the next step of the session can be executed by another
process. This is much less than the provision of multi-tasking (which could still be used
internally). Once the server software is prepared to run in multiple processes, it has in-
herent scalability because the number of processes can be increased and decreased de-
pending on the workload. This technique has been used by TP monitors like IMS/DC
and UTM [14] as well as by Web servers (Fast CGI) [23].

5.2 Threads

Multi-tasking has been introduced as a technique to utilize waiting times that occur
while processing requests. At a closer look, this means in fact that a new unit of execu-
tion and scheduling is created inside a process. It is often called a “thread.” Other no-
tions are “second-level process” or “light-weight process.” Here, the name “task” is

Thirty Years of Server Technology 61

used (as in multi-tasking), because it is shorter and also allows to use “thread” for some-
thing else—see next subsection.

The concept of a task within a process only makes sense, if its management is much
simpler than that of a process. While a process switch usually requires the execution of
some 10,000 machine instructions, a task switch must be in the order of a few hundreds.
Also, the creation and destruction of tasks typically is much easier and thus much faster
than the creation and destruction of processes. As in the case of processes, one could
create a pool of tasks to be reused, but, on the other hand, dynamic creation and destruc-
tion adapts much better to the actual workload.

In either case, a second-level, or secondary, scheduling takes place in the server
process. It can be organized by the server software, but in some cases a similar service
is also offered by the operating system itself (MVS [22], Unix, Windows [21]). How-
ever, TP monitors are often doing it themselves, because they are to run under many op-
erating systems and thus cannot assume that the service is available. The same is true
for many database management systems. In these cases, I/O and external server calls
can be intercepted and used to stay in control with other tasks. Page fault and end of
time slice, however, deactivate the whole process and cannot be handled. If the operat-
ing system offers multi-tasking, it might switch to another task even in the case of a
page fault. End of time slice stops the process in either case.

Employing several processes creates the need for inter-process communication,
e.g., for the exchange of contexts. Messages are too slow or too expensive for this, so
shared memory should be used. The scheduling at two levels that has just been de-
scribed can also be used to organize the access synchronization to this memory. In some
systems, other kinds of data are also placed in the shared memory. As a consequence,
more complex ways of synchronization must be provided.

5.3 Program Management

At the beginning of this section, we have pointed out that a programmer only has to deal
with the processing of a single request. All servers, however, must cope with a large
number of requests being issued at the same time. So many of the tasks and processes
involved in the request processing can be forced to execute the same program. The
straightforward solution is to give each task its own copy of the program. This would
work, but it can lead to an enormous consumption of memory. Even if virtual memory
was large enough to handle it in principle, page swapping managed by the operating
system would be a significant performance threat.

The most attractive solution seems to be using a single copy of each program. Then
each task executing this program creates a “thread” through the code (here the notion
fits better). This “multi-threading” is not the same as multi-tasking: If each task receives
its own copy of the code, then there is no multi-threading.

Multi-threading, however, has some important prerequisites: Not any kind of code
can be used for it. All local variables must be moved to the context which is managed
for each task separately. Otherwise, the tasks would interfere in an unpredictable way.

62 Klaus Meyer-Wegener

Many compilers support this by creating separate data and code segments from a
source. Hence, the code becomes read-only and thus “reentrant.” This should be the
standard today; it was a different situation in the earlier times of server implementation.

5.4 Naming

Once server structures in terms of processes and tasks have been defined and created in
a system, they must be made accessible for potential users. This creates a need for the
naming of servers. In general, a many-to-many relationship among servers and network
nodes can be assumed. On each node, several servers can be running which must be dis-
tinguished by names. Vice versa, a server (from the user’s point of view) can be running
on more than one node. This introduces the concept of server class, which appears to
be a single server from the client’s point of view, but in fact consist of several servers
on different nodes. The meaning here is that these nodes are interchangeable; either of
them can be used to process a request. A distribution or load balancing mechanism is
needed to assign a particular server to an incoming request. A URL is a common means
to address nodes and servers in the age of the Web, but it cannot cope with server class-
es. Here, a URI would be more appropriate.

Each server offers many services (or operations). Each request identifies exactly
one of these and provides it with a set of parameters. It does not make sense to have the
identical service on several servers, so a one-to-many relationship is assumed between
servers and operations.

Programs should be completely invisible for the users, but the programmers have
to design them for the handling of requests. As has been shown in the preceding sub-
sections, there are good reasons to allow the cooperation of more than one programs in
the handling of an individual request. It is definitely a burden for the programmer to be
forced to create many small fragments of a program. This can at least partially be turned
into a virtue, if some of these fragments can be re-used in the processing of other re-
quests. This is not very unlikely. Assuming that in the booking of a theatre seat the user
says that he or she is not yet registered. Then the registration process—usually a sepa-
rate operation—is invoked as part of the booking process.

Many naming services and systems are available today. As examples, take X.500,
LDAP, Jini, UDDI, etc.

5.5 Transactions

All these systems have to cope with many kinds of errors and failures. Here, it is impor-
tant to hide as much as possible from the clients and to always be in an identifiable state.
The processing of a request may involve many internal steps and even other subsys-
tems. For the client, however, it appears to be an atomic step. It should be protected
from any details of processing (so they can be modified if necessary). When an error
occurs, the client can understand only two states: Either the error is reported as the re-
sponse, and nothing has happened in the server—rather, what has happened has been

Thirty Years of Server Technology 63

undone, so that it looks as if nothing had happened. Or the server repairs the error, takes
some measures to continue processing with other means and finally reaches a positive
result that it can send back as the result. Anything in between is neither comprehensible
nor acceptable for the client.

The transaction concept known from database systems [4, 13, 15] can handle this
very well. But a database will in many cases be just one of the systems involved in
processing a request. So it could be the case that the database has successfully complet-
ed its transaction, while other systems involved (e.g., the file system) have not been able
to do so. Because the client is not aware of the set of systems cooperating to process its
request, it cannot understand the state the system is in then. Consequently, the server
administrator must fix this before processing can continue. By manual repair he or she
must set the server into a state that is acceptable for the client. In most situations, how-
ever, this takes far too long.

The better solution for this problem is the provision of transaction management sep-
arated from database management systems in order to make it available for all partici-
pating systems. This has been done by defining communications protocols among these
systems, e.g., XTP [18].

As a result, transactions are now a service of the server as a whole or rather, the mid-
dleware. It guarantees the all-or-nothing property for the overall processing of a request,
irrespective of the number and heterogeneity of the subsystems involved. Incomplete
operations are rolled back to their beginning, so that it appears as if nothing has hap-
pened. The error reported to the client should allow it to distinguish whether a repetition
of the request makes sense or not. If the error has been raised by a transient situation in
the server, e.g., a deadlock, the repetition is possible. If a program error like a division
by zero is encountered, the repetition would only reproduce the error.

On the other hand, complete operations should not be compromised by failures that
occur later. Once the result has been reported to the client, it should remain valid even
in the presence of all (expected) failures. The message with the result might be lost, but
when the client asks for it later, it must be reproduced. Data in the server might be af-
fected by disk errors or other crashes. It must be possible to recreate them. All these
guarantees are the responsibility of the middleware and should not be left to the appli-
cation programmer.

6 Discussion of Server Architecture

In all the development of the concepts listed above, the goal has always been to keep
programming simple, while at the same time utilizing the system optimization potential
to increase efficiency. This is achieved for multi-tasking, multi-threading, transaction
management, and other techniques neglected here for space reasons. It has not been
reached in all the cases, because the separation of programs and the management of the
context cannot be hidden from the programmer. However, the programs are restricted
to the processing of a single request and are not bothered with the coordination of par-
allel processing. Production of reentrant code is the task of the compiler, not the pro-

64 Klaus Meyer-Wegener

grammer. And if all local variables are treated as the context, its management can even
be left to the run-time system.

The task of the middleware is then to allow for the continuous optimization of in-
ternal strategies without affecting the application programs. Scheduling, program man-
agement, and transaction management can be completely the field of responsibility of
the middleware and hence are not at all visible in the program. The idea of “aspect-ori-
ented programming” looks very interesting in that respect. However, many details re-
main to be clarified.

7 Summary and Conclusion

The idea behind this presentation is to identify and develop general structures and
mechanisms that can be re-used in any kind of server, namely in all the kinds of servers
listed in section 2. The techniques presented above can be used in any of these. Partially,
this is already the case. However, some have re-invented the wheel, and some are still
at a stage that others have left behind for long.

The desire to increase performance, however, is still there. As always, application
programming will be influenced by this. Programmers will tweak their programs to
make them faster. As a consequence, application logic is mixed with come code only
inserted to increase performance.

The ongoing task therefore is to work on the separation of application logic and in-
frastructure. It must be clear before tools can be designed. Interfaces are needed. J2EE
is an approach to this. However, the idea of EntityBeans does not match the set-oriented
query processing of relational databases. So there is room for improvement.

The separation of application logic from presentation (layout, rendering) is pretty
good already. XML helps significantly, because it offers a platform-independent coding
of contents. Layout is added separately.

References

[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures
and Applications. Springer, 2004

[2] Anon. et al.: A Measure of Transaction Processing Power, in: Datamation, Feb. 1985, pp.
112–118

[3] Bennett, M., Percy, T.: A TP Monitor Interface for Data Base Management Systems, in:
On-Line Data Bases, Infotech State of the Art Report, Part I: Analysis and Bibliography,
Part II: Invited Papers, Maidenhead 1977, Part II, pp. 15–26

[4] Bernstein, P.A., Newcomer, E.: Principles of Transaction Processing. Morgan Kaufmann,
San Francisco (1997)

[5] Burman, M.: Aspects of a High-Volume Production Online Banking System, in: Proc.
IEEE Spring Compcon 1985, pp. 244–248

Thirty Years of Server Technology 65

[6] Callaghan, B.: NFS Illustrated. Addison-Wesley, 2000
[7] Campbell, R.: Managing AFS: The Andrew File System. Prentice Hall PTR, 1998, ISBN

0138027293
[8] Clarke, R.: Teleprocessing Monitors and Program Structure, in: The Australian Computer

Journal, Vol. 14, No. 4, Nov. 1982, S. 143-149
[9] Davenport, R.A.: A Guide to the Selection of a Teleprocessing Monitor. Real-Time Soft-

ware, Infotech State of the Art Report, Maidenhead (1976) 609-621
[10] Deitch, M.: Analytic queuing model for CICS capacity planning, in: IBM Systems Journal,

Vol. 21, No. 4, 1982, S. 454-469
[11] Gray, J., Good, B., Gawlick, D., Homan, P., Sammer, H.: One Thousand Transactions per

Second, in: Proc. IEEE Spring Compcon, San Francisco, Feb. 1985, pp. 96–101
[12] Gifford, D., Spector, A.: The TWA Reservation System (Case Study), in: Comm. ACM,

July 1984, Vol. 27, No. 7, S. 650-665
[13] Gray, J., Reuter, A.: Transaction Processing : Concepts and Techniques. Morgan

Kaufmann Publishers, 1993, ISBN 1-55860-190-2
[14] Häussermann, F.: Recovery Problems in Transaction Processing Systems, in: Proc. 5th

Conf. on Computer Communication, Atlanta 1980, pp. 465–469
[15] Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery, in: ACM

Computing Surveys, Vol. 15, No. 4, Dec. 1983, pp. 287-317
[16] IBM: Customer Information Control System / Virtual Storage (CICS/VS), General Infor-

mation, 1982, Order No. GC33-0155-1
[17] Monson-Haefel, R.: Enterprise JavaBeans. Sebastopol : O'Reilly, 1999, ISBN 1-56592-

605-6
[18] The Open Group: Distributed TP: The XA Specification. Catalog number C193, ISBN 1-

87263-024-3, Feb 1992
[19] Orfali, R., Harkey, D., Edwards, J.: The Essential Distributed Objects Survival Guide.

John Wiley, 1996
[20] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere, D.C.:

Coda: A Highly Available File System for a Distributed Workstation Environment, in:
IEEE Transactions on Computers, Vol. 39, No. 4, 1990, S. 447-459

[21] Tanenbaum, A.S.: Modern Operating Systems. 2nd edition. Prentice-Hall, 2001
[22] Witt, B.I.: The functional structure of the OS/360, Part II: Job and task management, in:

IBM Systems Journal, Vol. 5, No. 1, 1966, pp. 12-29
[23] Yeager, N., McGrath, R.E.: Web Server Technology. Morgan Kaufmann, San Francisco

1996. ISBN 155860376X
[24] Zimmermann, O., Tomlinson, M., Peuser, S.: Perspectives on Web Services. Springer,

2003, ISBN 3-540-00914-0

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 67-89, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Caching over the Entire

User-to-Data Path in the Internet

Theo Härder

University of Kaiserslautern, Germany
haerder@informatik.uni-kl.de

Abstract. A Web client request traverses four types of Web caches, before
the Web server as the origin of the requested document is reached. This cli-
ent-to-server path is continued to the backend DB server if timely and trans-
action-consistent data is needed to generate the document. Web caching typ-
ically supports access to single Web objects kept ready somewhere in caches
up to the server, whereas database caching, applied in the remaining path to
the DB data, allows declarative query processing in the cache. Optimization
issues in Web caches concern management of documents decomposed into
templates and fragments to support dynamic Web documents with reduced
network bandwidth usage and server interaction. When fragment-enabled
caching of fine-grained objects can be performed in proxy caches close to the
client, user-perceived delays may become minimal. On the other hand, data-
base caching uses a full-fledged DBMS as cache manager to adaptively
maintain sets of records from a remote database and to evaluate queries on
them. Using so-called cache groups, we introduce the new concept of con-
straint-based database caching. These cache groups are constructed from pa-
rameterized cache constraints, and their use is based on the key concepts of
value completeness and predicate completeness. We show how cache con-
straints affect the correctness of query evaluations in the cache and which op-
timizations they allow. Cache groups supporting practical applications must
exhibit controllable load behavior for which we identify necessary condi-
tions. Finally, we comment on future research problems.

1 Motivation

Internet-based information systems and e*-applications are growing with increasing
pace and their users are placing tremendous workloads with critical response-time re-
strictions on the Internet and the Web servers. For these reasons, scalability, perfor-
mance—in particular, minimization of user-perceived delays—, and availability are
prime objectives for their system development. Most of all, various forms of caching in
the Web have proven to be a valuable technique1 towards these design goals. Three as-

68 Theo Härder

pects make caching attractive in the Web environment, because it effectively reduces
network bandwidth usage, user-perceived latency, and workload on the origin server.

To improve response time and scalability of the applications as well as to minimize
communication delays in wide-area networks, a broad spectrum of techniques has
emerged in recent years to keep static Web objects (like HTML pages, XML fragments,
or images) in caches in the client-to-server path. These techniques, often summarized
as Web caching, typically support access by object identifiers and aim at locating and
possibly assembling user-requested Web objects in caches near the Web client to un-
burden the Web traffic and to achieve minimal response times. In particular for static
Web objects, it can provide various kinds of performance improvements for e*-appli-
cations [26]—a reason which amplified the setup of Web caches and the optimization
of their usage by tailored replacement strategies [23] in recent years. Nowadays, how-
ever, more and more dynamically generated content is needed and offered making Web
applications even more attractive and enabling new forms of business: contents’ per-
sonalization, goal-oriented advertisement, interactive e-commerce, one-to-one market-
ing, and so on. Obviously, the way caching is performed has to respond to these new
requirements. To effectively serve this trend, caches have to be aware of the internal
structure of documents (Web pages) to enable selective reuse of static fragments (ob-
jects) and exchange of dynamic parts in order to assemble them to the actual document
to be delivered in the most cost-effective way. Fragment-enabled caching techniques
have to be developed which can distinguish and manage templates and fragments of
Web documents separately.

2 The Client-to-Server Path

Conceptually, a Web request is processed as follows: A Web client (client throughout
the paper) sends a query containing a URL via HTTP and the Internet to a Web server
(origin server or server, for short) identified by the URL. The server processes the re-
quest, generates the answer (typically an HTML or XML document), and sends it back
to the client. To solve the performance and availability problems sketched above, we
add, again conceptually, a Web proxy server somewhere in the client-to-server path.
Such a proxy can be used in a number of ways, including

– caching documents and parts thereof
– converting data to HTML/XML format so it is readable by a client browser
– providing Internet access for companies using private networks
– selectively controlling access to the Internet based on the submitted URL
– permitting and restricting client access to the Internet based on the client IP address

In this contribution, we concentrate on the caching functionality of proxies and discuss
the client-to-server path how it evolved during the recent past. Caches, in general, store

1. “The three most important parts of any Internet application are caching, caching, and,
of course, caching …”—Larry Ellison, Oracle Chairman & CEO.

Caching over the Entire User-to-Data Path 69

frequently accessed content and locally answer successive requests for the same content
thereby eliminating repetitive transmission of identical content over network links.
Thus, the complete caching solution comprises a networking component and a cache
component which work together to localize traffic patterns: A user requests a Web page
from a browser. The network analyzes the request and, based on certain parameters,
transparently redirects it to a local cache in the network. If the cache does not contain
the Web page, it will make its own request to the origin server, which then delivers the
content to the cache, which, in turn, delivers the content to the client while saving the
content in its local storage, that is, caching the content. Subsequent requests for the
same Web page are analyzed by the network and, based on certain parameters, transpar-
ently redirected to the local cache.

This process may substantially reduce network traffic and latency time for the cli-
ent. Based on their use and behavior, we can distinguish four types of caches:

• Browser cache
For all user requests, this cache dedicated to the browser is first searched. If the spe-
cific content is located in the cache, it is checked to make sure that it is “fresh”. Such
a private cache is particularly useful if a user scrolls back in his request history or
clicks a link to a page previously looked at.

• Proxy cache
While working on the same principle, but at a much larger scale, such a cache is
shared, performs demand-driven pull caching, and serves hundreds or thousands of
users in the same way. It can be set up on the firewall or as a stand-alone device. Un-
less other search paths are specified, a cache miss sends the request to the next proxy
cache in the client-to-server path.

• Reverse proxy cache
This kind of cache is an intermediary also known as “edge cache”, “surrogate cache”,
or “gateway cache”. While not demand-driven, such caches reverse their role as
compared to proxy caches, because they are supplied by origin servers with their
most recent offerings—a kind of push caching. Furthermore, they are not deployed
by network administrators to save bandwidth and to reduce user-perceived delays
which are characteristic for proxy caches, but they are typically deployed by Web
masters themselves, to unburden the origin servers and to make their Web sites more
scalable, reliable, and better performing.

• Server cache
It keeps generated content and enables reuse without interaction of the origin server.
Intermediate results and deliverable Web documents help to reduce the server load
and improve server scalability.

With these definitions, we are able to explain how a Web request is processed in detail,
as illustrated in Fig. 1. Note, we pursue a functional view and focus on the client-request
paths of a single ISP (Internet service provider) to servers connected to the Internet via
another ISP.

Each of the ISPs is able to connect a set of clients and servers to a wide-area net-
work. Ci and Sj represent clients and origin servers, respectively2. BCi refers to the

70 Theo Härder

browser cache of Ci, whereas PTL (top-level), Pn, Pnm, ... identify proxy caches typically
allocated in local-area networks (LANs) and organized as a multi-level hierarchy in the
domain of an enterprise (Intranet). Usually, a stand-alone firewall device (FW) sepa-
rates the Intranet from its ISP and the Internet; for private clients, the firewall is often
combined with the browser cache. An ISP plays two roles: it provides access to the In-
ternet for its clients and usually manages the top-most proxy cache for them. On the oth-
er hand, it is a transit provider for routing requests through the Internet. If an ISP offers
caching services for routing requests, it is sometimes denoted as transparent caching3

which is much less effective, because routing may use multiple communication links to
the origin server (from ISP1 to ISPk in Fig. 1) and select a different path on each re-re-
quest. Hence, client-side proxy caching is most effective in the invocation paths from
BC up to the corresponding ISP (also denoted as forward proxy caching).

In contrast, the caching mechanisms at the server side are primarily directed to-
wards server scalability and overload protection. Requests can be routed to reverse
proxies by a number of methods; two of them are indicated in Fig. 1, where some form
of load balancing (LB) is involved. This mechanism makes the reverse proxy caching
look like the origin server to clients. The incoming requests are either distributed via LB
to the reverse proxies (RPi) or directly to an RP with built-in LB which, on an RP cache

2. Using port 80, it is always possible to choose a direct communication link from C to S
if the IP address of the origin server is known.
3. While usually the use of a proxy server must be explicitly disclosed to its clients, that
of a transparent proxy must not. Hence, caching of such a proxy server remains transpar-
ent to the clients.

Fig. 1 The Client-to-Server Path through the Internet

PTL

P1 Pm

P1kP11

C1 Cn Cj Ct Ci

BC1 BCn BCj BCt BCi

. . .

. . .

FW

LB

RP1 RPp

SC1

S1

. . .

ISP1 ISPk

ISPi

ISPj

. . .

. . .

FW

Internet

reverse
proxy

caching

trans-
parent
caching

forward
proxy
caching

FW

RP/LB

SC2

S2

P: proxy
RP: reverse

proxy
FW: firewall
LB: load

balancer

Caching over the Entire User-to-Data Path 71

miss, forward them to the server cache (SCj) or a specific server processor, when the
server itself is embodied by a processor complex.

Another form of reverse proxy caches or edge caches is used in so-called content
delivery networks (CDNs) where such caches are distributed throughout the Internet or
a part of it. Dynamic content is supplied, if possible, in edge servers. Otherwise, when
data is missing or when stale content does not comply with the clients’ consistency re-
quirements, the requests are forwarded to the Web server. These edge servers are con-
sidered as an extension of the trusted Web server environment, because they are either
within the server’s administrative domain or within a CDN contracting with the content
provider. Enterprise software and CDN solutions like EdgeSuite (Akamai) and Web-
Sphere Edge Server (IBM) are offloading to edge servers certain applications compo-
nents (such as servlets, JSPs, Enterprise Beans, and page assembly) which usually run
at the Web server. For example, Akamai’s CDN currently contains up to 15.000 edge
servers [1]. A CDN provider sells caching as a service to interested Web sites and guar-
antees availability of contents on all important Internet nodes for their customers. In this
way, customers such as Amazon or MSNBC reach high availability even under extreme
load situations without scaling their own Web servers.

3 Web Caching

An important practical consideration concerns the validity of Web objects, particularly
in client-side caches. For this reason, the so-called time-to-live algorithm (TTL) is used
to determine whether or not a Web object present in a cache can be used to satisfy a cli-
ent request. Hence, only valid objects can be delivered to the client and are, therefore,
kept in the cache. If it runs out of space anyway, some algorithm has to be used to make
room for the objects of the current client requests.

3.1 Replacement Strategies

As compared to DB buffer management, which typically provides fixed-length frames
and applies LRU- or LRD-based replacement algorithms, Web caching is much more
complex. Web objects need variable-length frames and are characterized by more fac-
tors that critically influence the replacement decision. To indicate their spectrum, we in-
clude the list of important factors from [18]:

– time of the last reference to the object (recency)
– number of requests to an object while in the cache (frequency)
– size of the Web object (size)
– cost to fetch an object from its origin server (cost)
– time of last modification, time when an objects gets stale (expiration time).

The influence or interdependencies of these factors cannot be discussed in detail. We
can only summarize the resulting cache replacement strategies which typically exploit

72 Theo Härder

the first four factors above. A suitable classification of them was given in [16] and sur-
veyed in [23]:
• Recency-based strategies incorporate recency (and size and/or cost) into the replace-

ment process.

• Frequency-based strategies exploit frequency information (and size and/or cost) in
the replacement decision.

• Recency/frequency-based strategies consider both recency and frequency under
fixed or variable cost/size assumptions.

3.2 Validity of Cached Objects

A Web cache must be able to locally determine the validity or freshness of its objects.
For this reason, the cache is equipped with some checking rules and each object carries
a number of parameters in its HTTP header. Some simple ground rules together with
object-related parameters allow rapid checking of the object’s validity.

The Expires HTTP header is the basic means of controlling caches. It tells the cache
how long the object is fresh for; after that time, the cache will always check back with
the origin server to see if a document is changed. Most Web servers provide a number
of ways to set Expires response headers. Commonly, they will allow setting an absolute
time to expire (e.g., Expires: Mon, 4 April 2005 13:49:31 GMT), a time based on the
last time that the client saw the object (e.g., Last-Accessed: Fri, 8 April 2005 23:07:18
GMT), or a time based on the last time the document changed on your server (e.g., Last-
Modified: 8 April 2005 21:27:28 GMT). If no Expires value as the definite time limit is
set (for so-called ZeroTTL objects), the cache may estimate the freshness via Last-Ac-
cessed or Last-Modified. If these values are also undefined, caching of this object is usu-
ally not possible.

Although the Expire mechanism is useful, it is still somewhat limited. In quite a
number of cases, content is cacheable, but the protocol lacks methods to tell the caches
how to handle such objects. Some experimental studies have shown that a considerable
portion of uncacheable HTTP content is actually cacheable [28]. To improve this situ-
ation, HTTP 1.1 introduces enhanced and more flexible object control via the Cache-
Control response headers which allow Web masters to define how pages should be han-
dled by caches. They include directives to specify what is cacheable, what may be
stored, how to modify the expiration mechanism, as well as how to revalidate or reload
objects. Useful Cache-Control response headers include:

• max-age=[seconds]—specifies the maximum amount of time that an object will be
considered fresh. Similar to Expires, this directive allows more flexibility.

• public—marks the response as cacheable, even if it would normally be uncacheable,
e.g., if the object is authenticated, the public directive makes it cacheable.

• no-cache—forces caches (both proxy and browser) every time to submit the request
to the origin server for validation before releasing a cached copy. This is useful to

Caching over the Entire User-to-Data Path 73

assure that authentication is respected (together with public), or to maintain rigid ob-
ject freshness, without sacrificing all of the benefits of caching.

• must-revalidate—tells the cache that it must obey any freshness information for the
object. This header forces the cache to strictly follow the given rules.

In addition, the checking times of caches, that is, when they control their objects’ valid-
ities, can be configured, e.g., once per session or time unit. Hence, simple cache-related
rules together with object-related parameters determine the freshness semantics of
cached objects and guarantee rapid local checking of an object’s validity.

3.3 Dynamic Content

So far, our discussion primarily considered static Web objects, typically Web pages
containing static HTML/XML data, whose source code is stored at the Web server. In
such cases, a page miss in all proxy caches causes the delivery of a fresh page from the
Web server.

In the current Internet, however, interactive pages of online shops, member logins
of community pages, etc. play a performance-critical role. All of them contain static
fragments which have long validity periods and may be shared by many clients access-
ing essentially the same page in some personalized appearance. On the other hand, some
of their fragments are highly dynamic, can only be shared by a few clients or not at all,
and must be re-generated almost upon each reference. There are some reasons not dis-
cussed here, why proxy caches are of limited use today when dynamic content is fre-
quently needed. However, there are already useful caching mechanisms available at the
server side which help to satisfy the requirements and optimize the run-time behavior
of the “client-server” loop. In principle, these mechanisms can be refined such that they
are also applicable at the client side in the near future.

In cases where a few and small content fragments exhibit high update frequencies,
the concept of edge-side includes (ESI) is particularly helpful. Dynamic Web pages are
not handled as units anymore, instead fragment-enabled caching allows the manage-
ment of such pages at a finer level of granularity. Dynamic pages (documents) are de-
composed into a template and several fragments for which separate TTL values and
URLs can be specified. The template describes the layout of the Web page and specifies
the location of each content fragment belonging to it.

For this purpose, the ESI concept—proposed by W3C in summer 2001 and current-
ly the de facto standard for templates in fragment-based documents [27]—offers XML-
based language constructs which enable the composition of dynamic Web pages and a
fragmentation of their content. Actually, the markup format specifies content fragments
for inclusion and assembly in a base template. ESI also includes a complete framework
for conditional fetching of fragments, cookie support, and error control. As a conse-
quence, separation of content generation and content provision becomes possible which
greatly increases Web server scalability.

As illustrated in Fig. 2, such a fragmentation assigns separate TTL values to the
fragments of template-based page, all of them identified by separate URIs. Hence, these

74 Theo Härder

fragments can be selectively exchanged (if expired) or flexibly composed to new pages
(shared use). If a cache is equipped with the assembly and exchange logic of such tem-
plate- and fragment-based pages, much of the extra burden of dynamic page manage-
ment can be assigned to the caches in the client-to-server path.

Today, ESI is primarily used at the server side, in particular by the edge caches of
CDNs. In addition to Web server scalability, its use will gain more and more benefits
also at the client side when it conquers the proxy caches or even the browser caches
thereby reducing user-perceived delays and network bandwidth usage.

3.4 Future Fragment-Enabled Caching

As sketched above, ESI concepts help to distinguish and manage templates and frag-
ments of Web documents separately. The resulting fragment-enabled caching tech-
niques have to be refined to maximize flexibility of dynamic document assembly and
minimize its underlying overhead. Therefore, fine-grained fragment identification is
desirable independently of their location on the template, which makes various kinds of
fragment behavior possible, for example, fragment movement in a newly assembled
document.

Fragment-based documents need efficient and fine-granular update methods, even
if the fragment locations change or if some fragments serve personalization purposes.
Fragment movements frequently occur, as illustrated in Fig. 3a and b, when in a Web
document containing news, actual stories added on the top are pushing the older ones
down in the document. A similar situation occurs if personalized pages use the same
template, but differ in a few fragments which carry, for example, the salutatory address
or some items preferred by the client. Technically, each esi:include tag references a spe-
cific URI with a TTL, which is stored in the template file. Hence, all the information
related to the template and its fragments is actually present in the template itself. Frag-
ment movement in the current ESI concept can be performed as follows: One option is
to update all fragments where the object moved to where it moved from, which seems
expensive. Alternatively, the template can be updated such that it contains the URLs of
the new locations pointing to the correct fragments [25].

Fig. 2 Fragmentation of a Dynamic Web Document using ESI

Layout, TTL = 1 year

Navigation, TTL = 3 months

Image, TTL = 8 hours

Header, TTL=6 months

Stock Quotation, TTL = 2 min

News, TTL = 2 weeks

Caching over the Entire User-to-Data Path 75

There is no effective and efficient way to solve these problems in the current ESI
infrastructure. Neither invalidation of many objects that are actually valid nor invalida-
tion of the template which typically needs very little data modification seem appropri-
ate. A new solution is proposed by the DyCA (dynamic content adaptor) approach de-
scribed in [7]. The essential idea is to extract the objects from the original content there-
by achieving the needed separation between template, objects, and object location.
DyCA uses a mapping table which introduces some kind of reference indirection and,
in turn, does not require the template and the objects to be invalidated for spatial chang-
es. Even personalization seems possible with dedicated mapping tables by reusing the
original template and all common fragments (Fig. 3c).

The cache holds the mapping table together with the template. When a dynamic
document is assembled in the cache, the identifiers of its fragments are looked up in the
mapping table. If a fragment is located in the cache and satisfies the TTL or other va-
lidity constraints, it is directly integrated into the document; otherwise, a fresh version
is fetched from the appropriate URL. Hence, object movement only requires an update
of the small-sized mapping table and personalization of documents can be handled by
using dedicated mapping tables.

In a recent empirical exploration [7], the update costs of dynamic documents were
evaluated in detail. Tab. 1 copies some indicative numbers gained from this experiment
referring to large existing Web sites. The update problem caused by object movement
(e.g., by a news ticker) was quantified by simulating four different approaches:

– no fragment caching
– static template, fragment updates due to data and spatial changes
– template updates, static objects (fragment updates only to due data changes)
– use of a mapping table.

Fig. 3 Personalization and Movement of Fragments

a) Template1 (t=t1, p=p1)

O1

O4

O3

O2

template {
<esi:include src=o1>
<esi:include src=o4/>
<esi:include src=o3/>
<esi:include src=o2/>
}

b) Template1 (t=t2, p=p1)

O1

O5

O4

O3

c) Template1 (t=t2, p=p2)

O6

O5

O4

O3

template {
<esi:include src=o1>
<esi:include src=o5/>
<esi:include src=o4/>
<esi:include src=o3/>
}

template {
<esi:include src=o6>
<esi:include src=o5/>
<esi:include src=o4/>
<esi:include src=o3/>
}

76 Theo Härder

The evaluation provides interesting empirical data for the “total data transfer between
server and cache” and “user-perceived latency”. In general, both “template updates,
static objects” and “mapping table” clearly outperform the other approaches.

So far, we have discussed fragment-enabled Web caching which allows spatial
movement of objects in and personalization of dynamic documents thereby supporting
all caching objectives sketched in the introductory section. If the content is delivered as
textual sources by information providers, for example, via news tickers, it is edited and
formatted as XML or HTML fragments by the origin server and distributed to the cli-
ents (either by pull or push mechanisms). If, however, the dynamic content has to be
queried and fetched by the Web server from continuously changing data in a possibly
remote database, transactional programs (application logic) have to be provided to the
server to evaluate the DB queries and to deliver transaction-consistent query results.
This kind of content provision and its consistency requirements may introduce another
bottleneck into the now prolongated client-to-server path which leads to the point where
DB caching comes into play.

4 The User-to-Data Path

As transactional Web applications (TWAs) must deliver more and more dynamic con-
tent and often updated information, Web caching should be complemented by tech-
niques that are aware of the consistency and completeness requirements of cached data
(whose source is dynamically changed in backend databases) and that, at the same time,
adaptively respond to changing workloads. Because the provision of transaction-con-
sistent and timely data is now a major concern, optimization of Web applications has to
consider the entire user-to-data path. Because the essential caching issues in the path up
to the Web server are already addressed in sufficient detail, we target at specific prob-
lems on the remaining path towards DB-managed data.

Several different solutions, summarized as database caching, have been proposed
in recent years [2, 3, 5]. Fig. 4 focuses on the realm of DB caching and complements
the Big Picture of Web caching shown in Fig. 1. For this relatively new problem, cur-
rently many DB vendors are developing prototype systems or are just extending their

Tab. 1 Comparison of Template and Object Sizes

NY Times India Times Slashdot

Template Size 17 KB 15 KB 1.7 KB

Avg. Object Size 3.6 KB 4.8 KB 0.6 KB

Mapping Table Size 1.0 KB 0.8 KB 2.2 KB

Caching over the Entire User-to-Data Path 77

current products [e.g., 14, 15, 19] to respond to the recently uncovered bottleneck for
Web information systems or e*-applications.

4.1 Challenges of the Data Bottleneck

What is the technical challenge of all these approaches? When user requests require re-
sponses to be assembled from static and dynamic contents somewhere in a Web cache,
the dynamic portion is often generated by a remote application server, which in turn
asks the backend DB server (backend DB) for up-to-date information, thus causing sub-
stantial latency. An obvious reaction to this performance problem is the migration of
application servers to data centers closer to the users: Fig. 4 illustrates that clients select
one of the replicated Web servers “close” to them in order to minimize communication
time. This optimization is amplified if the associated application servers can instantly
provide the expected data—frequently indicated by geographical contexts. But the dis-
placement of application servers to the edge of the Web alone is not sufficient; con-
versely it would dramatically degrade the efficiency of DB support because of the fre-
quent round trips to the then remote backend DB, e.g., by open/next/close loops of cur-
sor-based processing via SQL application programming interfaces (APIs). As a
consequence, frequently used data should be kept close to the application servers in so-
called DB caches. Note, the backend DB cannot be moved to the edge of the Web as
well, because it has to serve several application servers distributed in wide-area net-
works. On the other hand, replication of the entire database at each application server is
too expensive, because DB updates can be performed via each of them. A flexible so-
lution should not only support DB caching at mid-tier nodes of central enterprise infra-
structures [6], but also at edge servers of content delivery networks or remote data cen-
ters.

Another important aspect of practical solutions is to achieve full cache transparen-
cy for applications, that is, modifications of the API are not tolerated. This application
transparency, which also is a prime aspect to distinguish caching from replication, is a
key requirement of DB caching. It gives the cache manager the choice at run time to
process a query locally or to send it to the backend DB to comply with strict consistency

Fig. 4 DB Caching for Web Applications

DB
Cache

DB
server

app.
server

Web
server(s)

customers
where region = ‘west’

customers
where region = ‘east’

Web clients application
logic

frontend
DB servers

backend
DB server

DB
Cache

app.
serverHTTP

SQL

HTTP
SQL

78 Theo Härder

requirements, for instance. Cache transparency requires that each DB object is repre-
sented only once in a cache and that it exhibits the same properties (name, type, etc.) as
in the backend DB.

The ultimate goal of DB caching is to process frequently requested DB operations
close to the application. Therefore, the complexity of these operations and, in turn, of
the underlying data model essentially determines the required mechanisms. The use of
SQL implies a considerable challenge because of its declarative and set-oriented nature.
This means that, to be useful, the cache manager has to guarantee that queries can be
processed in the DB cache, that is, the sets of records (of various types) satisfying the
corresponding predicates—denoted as predicate extensions—must be completely in the
cache. This completeness condition, the so-called predicate completeness, ensures that
the query evaluation semantics is equivalent to the one provided by the backend.

4.2 Technical Solutions for the Cache Manager

A full-fledged DB server used as cache manager offers great advantages. A substantial
portion of the query processing logic (parsing, optimization, and execution) has to be
made available anyway. By providing the full functionality, additional DB objects such
as triggers, constraints, stored procedures, or access paths can be exploited in the cache
thereby simulating DB semantics locally and enhancing application performance due to
increased locality. Furthermore, transactional updates seem to be conceivable in the
cache (some time in the future) and, as a consequence, continued service for TWAs
when backend databases become unavailable.

Note, a cache usually contains only subsets of records pertaining to a small fraction
of backend tables. Its primary task is to support query processing for TWAs, which typ-
ically contain up to 3 or 4 joins [2]. Often the number of cache tables—featuring a high
degree of reference locality—is in the order of 10 or less, even if the backend DB con-
sists of hundreds of tables.

A federated query facility as offered in [14, 20] allows cooperative predicate eval-
uation by multiple DB servers. This property is very important for cache use, because
local evaluation of some (partial) predicate can be complemented by the work of the
backend DB on other (partial) predicates whose extensions are not in the cache. Hence,
in the following we refer to predicates meaning their portions to be evaluated in the
cache.

4.3 Database Caching — Conventional Solutions

Static approaches to DB caching where the cache contents have to be prespecified and
possibly loaded in advance are of little interest in Internet applications. Such approach-
es are sometimes called declarative caching and do not comply with challenging de-
mands such as self-administration and adaptivity. Hence, what are the characteristics of
a promising solution when the backend DB is (frequently) updated and cache contents
must be adjusted dynamically?

Caching over the Entire User-to-Data Path 79

The conceptually simplest approach—full-table caching, which replicates the entire
content of selected backend tables—attracted various DB cache products [22]. It seems
infeasible, however, for large tables even under moderate update dynamics, because
replication and maintenance costs may outweigh the potential savings on query pro-
cessing.

So far, most approaches to DB caching were primarily based on materialized views
and their variants [4, 5, 8, 9, 17, 21]. A materialized view consists of a single table
whose columns correspond to the set of output attributes and
whose contents are the query result V of the related view-defining query with
predicate P. Materialized views can be loaded into the DB cache in advance or can be
made available on demand, for example, when a given query is processed the nth time
(). In this way, some kind of built-in locality and adaptivity (together with a re-
placement scheme) can be achieved. When materialized views are used for DB caching,
essentially independent tables, each representing a query result of , are separate-
ly cached in the frontend DB. In general, query processing for an actual query is
limited to a single cache table. The result of is contained in , if is logically
implied by (subsumption) and if is contained in (i.e., the output of the new
query is restricted by the attributes contained in a query result that is used). Only in spe-
cial cases a union of cached query results, e.g., , can be exploited.
DBProxy [3] has proposed some optimizations at the storage level. To reduce the num-
ber of cache tables, a common-schema storage-table policy is used, which tries to store
query results with strongly overlapping output attributes in common tables. On the
one hand, a superset of the attributes may potentially enhance caching benefits of

, but, on the other hand, it may increase storage and maintenance costs.
A new class of caching techniques [2, 24] follows the idea that the desired cache

contents are specified by so-called parameterized cache constraints. As soon as a ref-
erence to a parameter causes a cache miss, all records satisfying the specified cache con-
straint for this parameter value are loaded into the cache. As a consequence, the com-
pleteness condition is accomplished for query predicates that match the satisfied cache
constraints or are subsumed by them. Hence, cache maintenance guarantees that the
corresponding predicate extensions can correctly be exploited for future queries.

5 Constraint-Based Database Caching

Constraint-based DB caching promises a new quality for the placement of data close to
their application. The key idea is to accomplish for some given types of query
predicates P the so-called predicate completeness in the cache such that all queries eli-
gible for P can be evaluated correctly [11]. All records (of various types) in the backend
DB that are needed to evaluate predicate P are called the predicate extension of P. Be-
cause predicates form an intrinsic part of a data model, the various kinds of eligible
predicate extensions are data-model dependent, that is, they always support only spe-
cific operations of a data model under consideration. Cache constraints enable cache

OV O1 On=
QV

n 1

Vi QVi QA
QA Vi PA

Pi OA OVi

V1 V2 ... Vn

Vi
QViVi

80 Theo Härder

loading in a constructive way and guarantee the presence of their predicate extensions
in the cache.

The technique does not rely on static predicates: Parameterized constraints make
the specification adaptive; it is completed when the parameters are instantiated by spe-
cific values: An “instantiated constraint” then corresponds to a predicate and, when the
constraint is satisfied (i.e., all related records have been loaded) it delivers correct an-
swers to eligible queries. Note, the set of all existing predicate extensions flexibly al-
lows evaluation of their predicates, e.g., or or
subsets/combinations thereof, in the cache.

A cache contains a collection of cache tables that can be isolated or related to each
other in some way. For simplicity, let the names of tables and columns be identical in
the cache and in the backend DB: Considering a cache table S, we denote by SB its cor-
responding backend table, by S.c a column c of S.

Assume cache tables C, O, and P where C.cnr, O.cnr, and P.pnr are unique (U) col-
umns and the remaining columns are non-unique (NU), as illustrated in Fig. 5. In a com-
mon real-world situation, C, O, and P could correspond to backend DB tables Custom-
er, Order, and Product. Hence, both arrows would typically characterize PK/FK rela-
tionships that can be used for join processing in the cache.

Because all columns of the corresponding backend tables are kept in the cache, all
project operations possible in the backend DB can also be performed. Other operations
like selection and join depend on specific completeness conditions enforced by cache
constraints. Given suitable cache constraints, there are no or only simple decidability
problems whether predicates can be evaluated. Only a simple probe query is required at
run time to determine the availability of eligible predicate extensions. An important
goal for cache processing is to support local evaluation of queries that typically contain
simple projection (P) and selection (S) operations and equi-joins (J).

Assume for the moment, the cache enables PSJ queries, for example, with predicate
Q1 = (C.type = ‘gold’ and C.cnr = O.cnr and O.pnr = P.pnr) on COP. Then, all evalu-
able predicates can be refined by “and-ing” additional selection terms (referring to
cache table columns) to it; e.g., (and C.name like ‘Smi%’ and O.pnr > 17 and ...). Be-
cause full DB functionality is available, the results of these queries can further be re-
fined by selection predicates such as Exists, Null, etc. as well as processing options like
Distinct, Group-by, Having (restricted to predicates evaluable on the predicate exten-
sion), or Order-by.

P1 P2 ... Pn P1 P2 ... Pn

Fig. 5 Cache Table Collection COP

P
pnr

UC
cnr name

U NU

O
id
U

cnr pnr
NU NU

NU
desc

NU
type weight

NU

Caching over the Entire User-to-Data Path 81

5.1 Equality Predicates

Let us begin with single cache tables. If we want to be able to evaluate a given predicate
in the cache, we must keep a collection of records in the cache tables such that the com-
pleteness condition for the predicate is satisfied. For simple equality predicates like S.c
= v, this completeness condition takes the shape of value completeness: A value v is
said to be value complete (or complete for short) in a column S.c if and only if all
records of c=vSB are in S. If we know that a value v is complete in a column S.c, we
can correctly evaluate S.c = v, because all rows from table SB carrying that value are in
the cache. But how do we know that v is complete? A straightforward way is to provide
the cache manager with a list of candidate values of those columns we want to use in
equality predicate queries. Possible candidate values for a column S.c belong to the do-
main of SB.c. A list of candidate values can be specified as a complete list (all domain
values), an enumeration, a range, or other predicates; candidate values can be expressed
positively (recommendations) or negatively (stop-words).

Whenever a candidate value x occurs in an equality predicate of a query, the cache
manager probes the respective cache table to see whether this value is present: A suc-
cessful probe query (the value is found) implies that the predicate extension for the giv-
en equality query is in the cache and that this query can be evaluated locally. Otherwise,
the query is sent to the backend for further processing.

How do records get into a cache table? As a consequence of a cache miss attributed
to x, the cache manager satisfies the value completeness for x by fetching all required
records from the backend and loading them into the respective cache table. Hence, the
cache is ready to answer the corresponding equality query locally from then on.

Apparently, a reference to a candidate value x serves as a kind of indicator that, in
the immediate future, locality of reference is expected on the predicate extension deter-
mined by x. Candidate values therefore carry information about the future workload and
sensitively influence caching performance. As a consequence, they must carefully be
selected. In an advanced scheme, the cache manager takes care that only those candidate
values with high re-reference probability are in the cache. By monitoring the query load,
the cache manager itself can dynamically optimize the list of candidate values, for
which completeness is guaranteed whenever they appear in the cache. In a straightfor-
ward case, the database administrator (DBA) specifies this list of values.

Flexible adjustment of the (dynamic) list of candidate values that are present in the
cache is key to cache adaptivity. Because a probe query always precedes the actual que-
ry evaluation, completeness for a value v can be abolished at any time by removing all
records with value v from the cache table. Again, in the simplest case, there may be no
removal at all, and thus a value, once made complete, is left in the cache forever. Alter-
natively, complex replacement algorithms could be applied to unload all records carry-
ing a complete value if its re-reference probability sinks. Note, besides the factors mem-
ory and storage space, there is always a cost trade-off between the savings for query
evaluation and the penalties for keeping the records consistent with their state in the
backend.

82 Theo Härder

5.2 Equi-join Predicates

How do we obtain the predicate extensions of PSJ queries? The key idea is to use ref-
erential cache constraints (RCCs) to specify all records needed to satisfy specific equi-
join predicates. An RCC is defined between two cache table columns: a source
column S.a and a target column T.b where the tables S and T need not be different. RCC

 is satisfied if and only if all values v in S.a are value complete in T.b. It en-
sures that, whenever we find a record s in S, all join partners of s with respect to
S.a = T.b are in T. Note, the RCC alone does not allow us to correctly perform this join
in the cache: Many rows of SB that have join partners in TB may be missing from S. But
using an equality predicate on a complete value of column S.c as an “anchor”, we can
restrict this join to records that are present in the cache: The RCC expands
the predicate extension of (S.c = x) to the predicate extension of (S.c = x and S.a = T.b).
In this way, a complete value can serve as an entry point for a query.

Depending on the types of the source and target columns (unique: U, non-unique:
NU) on which an RCC is defined, we classify RCCs as (1:1), (1:n), and (n:m), and de-
note them as follows:

• or : member constraint (MC)
• : owner constraint (OC)

• : cross constraint (XC).

Note, using RCCs we implicitly introduce something like a value-based table model in-
tended to support queries. Despite similarities to the relational model, MCs and OCs are
not identical to the PK/FK (primary key / foreign key) relationships contained in the
backend tables. A PK/FK relationship can be processed symmetrically, whereas our
RCCs can be used for join processing only in the specified direction. Other important
differences are that XCs have no counterparts in the backend DB and that a column may
be the source of n and the target of m RCCs. In contrast, a column in the role of PK may
be the starting point of k, but in the role of FK the ending point of only one (meaningful)
PK/FK relationship. Because a very high fraction (probably > 99 %) of all SQL join
queries refers exclusively to PK/FK relationships (they represent real-world relation-
ships explicitly captured by DB design), almost all RCCs specified between cache ta-
bles are expected to be of type MC or OC. As a corollary, XCs and multiple RCCs end-
ing on a specific NU column seem to be very infrequent.

Assume in our COP example of Fig. 5 that and are
RCCs which, as usual, characterize PK/FK relationships that guarantee regular join se-
mantics when processed in the cache. The specification of additional RCCs

 or even and is conceivable (as-
sume join-compatible domains); such RCCs, however, have no counterparts in the
backend DB schema and, when used for a join of O and C or a cross join of O and P or
P and O, it completely remains the user's responsibility to assign a meaning.

S.a T.b

S.a T.b

U U U NU
NU U

NU NU

C.cnr O.cnr O.pnr P.pnr

O.id C.type O.cnr P.weight P.weight O.cnr

Caching over the Entire User-to-Data Path 83

5.3 Loading of Predicate Extensions

To evaluate predicate Q in the cache, the cache manager has to guarantee for Q predi-
cate completeness. A collection of tables is said to be predicate complete with respect
to Q if it contains all records needed to evaluate Q, i.e., its predicate extension.

An example of Q1’s predicate extension is illustrated in Fig. 6, where records are
represented by bullets and value-based relationships by lines. To establish complete-
ness for value gold of column C.type, the cache manager loads all records of

type = goldSC in a first step. For each of these records, RCC has to be
fulfilled (PK/FK relationships, solid lines), that is, all values of source column C.cnr
(1, 2, 3 in the example) have to be made complete in the target column O.cnr. Finally,
for all values present in O.pnr (y, z), RCC makes their counterparts
complete in P.pnr (FK/PK relationships, dashed lines).

In this way, the cache manager can construct predicate extensions using only simple
load steps based on equality of values. Accordingly, it can correctly evaluate the corre-
sponding queries locally. To generalize this example, we make the important observa-
tion that for the local processing of each PSJ predicate we need an entry point satisfying
an equality predicate. Then we can proceed with the processing of equi-joins via reach-
able RCCs. Hence, each complete value is eligible for deriving a predicate to be evalu-
ated locally.

Note, each cache-resident value of a U column is complete by definition. Further-
more, if only complete values enter a column, all values of this column are complete.
This is true for O.c in our example. We can generalize this case to domain completeness
greatly simplifying cache probing: A column S.c is said to be domain complete (DC) if
and only if all values v in S.c are value complete.

Given a domain-complete column S.c, if a probe query confirms that value v is
in S.c (a single record suffices), we can be sure that v is complete and thus evaluate
S.c = v locally. Unique columns of a cache table (defined by SQL constraints “unique”
or “primary key” in the backend DB schema) are DC per se (implicit domain complete-
ness). Non-unique columns in contrast need extra enforcement of DC.

C.cnr O.cnr

O.pnr P.pnr

C.type gold goldgold
1 2 3C.cnr

O.cnr 1 1 32 3 3

P.pnr y z

O.pnr - - y y y z

Fig. 6 Construction of a Predicate Extension for COP

84 Theo Härder

5.4 Cache Groups

So far, we have introduced the general idea of supporting cache-based query evaluation
using the COP example for a single complete value. Now we will generalize our ap-
proach and specify the predicate types to be processed in the cache together with the
kind of constraints to load their predicate extensions. Our mechanism supports PSJ que-
ries that are characterized by (valid SQL) predicate types of the form

((EP1 or ... or EPn) and EJ1 and ... and EJm)
where EPi, , is an equality predicate on a specific cache table called root table
and the EJj, , correspond to RCCs that (transitively) connect the root table
with the collection of the remaining cache tables involved.

For equi-join predicates, we have already introduced their specification mecha-
nism: RCC. To establish a parameterized loading mechanism together with an entry op-
tion for cache tables, a second type of cache constraint specified on a root table and
called filling column is needed: A column S.k with an associated list of candidate values
is called a filling column. Whenever a candidate value appears in S.k, it is kept com-
plete; only candidate values initiate caching when they are referenced by user queries.

Typically, filling columns are assumed simple. A multi-column mechanism differ-
ent from multiple simple columns is conceivable; then, values are to be composed of
simple values belonging to the participating columns. The cache manager guarantees
that a candidate value present in the cache is complete. Therefore, these values—pro-
vided either manually by the DBA or automatically upon monitoring the cache traffic
by the cache manager—can always be used as entry points for predicate evaluation.

Note, candidate values of filling columns play a dual role: They enforce cache load-
ing upon reference and—once in the cache—they represent entry points for querying,
because they are complete. The resulting collection of cache tables, filling columns, and
RCCs is called cache group: the particpating cache tables are linked by a set of RCCs.
A distinguished cache table is called the root table R of the cache group and holds i fill-
ing columns (). The remaining cache tables are called member tables and must be
reachable from R via the (paths of) RCCs. For example, our COP example constitutes
a simple cache group having C as its root table, two RCCs (m = 2), O and P as member
tables, and a single equality predicate on C.type (n = 1) as its filling column.

Domain-complete filling columns offer a simple way of specification because lists
of candidate values are not required, but they do not seem to be generally applicable4.

Safeness of cache groups. It is unreasonable to accept all conceivable cache group con-
figurations, because cache misses on filling columns may provoke unforeseeable load
operations. Although the cache-populating procedure can be performed asynchronously
to the transaction observing the cache miss, so that a burden on its own response time

4. In the DBCache project [2], so-called cache keys are used as filling columns defined to
be domain complete. Low-selectivity columns or single values in columns with skewed
value distributions may cause cache filling actions involving huge sets of records never
used later. It is therefore necessary to control the cache loading in a more refined way.

1 i n
1 j m

i 1

Caching over the Entire User-to-Data Path 85

can be avoided, uncontrolled loading is undesirable: Substantial extra work, which can
hardly be estimated, may be required by the frontend and backend DB servers, which
will influence the transaction throughput in heavy workload situations.

Specific cache groups may even exhibit a recursive loading behavior that jeopardiz-
es their caching performance. Once cache filling is initiated, the enforcement of cache
constraints may require multiple phases of record loading. Such behavior always oc-
curs, when two NU-DC columns of a cache table must be maintained, e.g., C.name and
C.type in Fig. 5. A set of values appears in C.name, for which C is loaded with the cor-
responding records of CB to keep column C.name domain complete. These records, in
turn, populate C.type with a set of (new) values which must be made complete, thereby
possibly introducing new values into C.name and so on.

Cache groups are called safe if there is no possibility for recursive load behavior to
happen. Upon a miss on a filling column, we want the initiated cache loading to stop
after a single pass of filling operations through the tables of the cache group. The con-
ditions a safe cache group must meet are explored in [12].

Entry points for query evaluation. A cache table column can be correctly tested and
used by an equality predicate only if the referenced value is complete. But how do we
know that? Of course, candidate values in filling columns are explicitly made complete,
and all cache table columns of type U are even domain complete.

Returning to Fig. 5, we find that C.cnr, O.id, and P.pnr are domain complete. If
cache probing is successful for C.cnr = 1, O.id = , or P. pnr = z, respectively, we can
evaluate, in addition to the predicate type COP is designed for, the three predicates
(C.cnr = 1 and C.cnr = O.cnr and O.pnr = P.pnr) or (O.id = and O.pnr = P.pnr) or
(P.pnr = z).

Obviously, cache-supported query evaluation gains much more flexibility and pow-
er, if we can correctly decide that other cache columns are domain complete as well. Let
us refer again to COP. Because is the only RCC that induces loading
of records in O, we know that O.cnr is domain complete (called induced domain com-
pleteness).

Note, additional RCCs ending in O.cnr would not abolish the DC of O.cnr, though
any additional RCC ending in a different column would do: Assume an additional RCC
ending in O.id induces a new value , which implies the insertion of id = OB into O—
just a single record o. Now a new value 7 of O.cnr, so far not present in O.cnr, may ap-
pear, but all other records of cnr = 7 OB fail to do so.

For this reason, a cache table loaded by RCCs on more than one column cannot
have an induced DC column. The same is true for a cache table that carries a filling col-
umn and is loaded by an RCC on a different column. Therefore, induced DC is context
dependent, which leads us to the following definition: A cache table column S.c is in-
duced domain complete, if it is the only column of S that is loaded via one or more RCCs
or that is a filling column.

To summarize our discussion of cache groups concerning their population and the
domain completeness of their columns: A cache table T can be loaded via one or more
filling columns or one or more RCCs ending in one or more of its columns. A column

C.cnr O.cnr

86 Theo Härder

of T is domain complete if it is a U column or a filling column with a complete list of
candidate values or induced domain complete.

5.5 Generalization of Predicates

Cache groups enable specific PSJ queries to be evaluated in the cache. The inherent
mechanism is to guarantee value or domain completeness in cache table columns and
to maintain via RCCs predicate completeness across a cache group which support se-
lection operations for equality predicates and equi-joins, respectively. Varying the fun-
damental idea of cache groups, we can apply the probing and completeness conditions
needed for local predicate evaluation to other types of SQL predicates. A generalization
of constraint specification and probing mechanisms leads us to the key observation [11]
that the cache group approach can be extended to

– simple predicates with other comparison conditions {<, >, <, , >}
– range predicates or even
– complex predicates composed of them by Boolean operators , ,).

Furthermore, it is conceivable, however much more complex, to establish predicate
completeness for aggregation, recursion, and other SQL predicates (Exists, Subquery,
etc.). The usefulness and realization aspects of such extensions have to be explored yet.

6 Seamless Processing of Web Objects

Obviously, all these ideas of constraint-based DB caching are not restricted to the rela-
tional model.or to SQL predicates. They may be applied equally well to other data mod-
els and the caching needs of their applications, e. g., to XML documents and XQuery
operations [27]. This observation delivers another argument for the opportunities and
benefits of the upcoming XML database management systems (XDBMS). If they are
native, that is, if they provide for the variety of XML language models (such as SAX,
DOM, XPath, and XQuery [27]) specific access models to fine-grained storage struc-
tures tailored to the processing requirements of XML documents [10], then there is no
need anymore to perform frequent, different, and heterogeneous type conversions often
complained in RDBMS-based e*-applications. Message data and DB data could be
managed and stored in the same way. Hence, queries on DB-based data could be direct-
ly evaluated on its native XML storage structures. Their result sets shaped as XML frag-
ments could be forwarded and stored in the various DB and Web caches up to the user
thereby only handled by a single and, therefore, homogeneous processing model.

The currently futuristic view of XDBMS dominance was already taken in [13]
where innovative DBMS architectures were explored. As a consequence of such a tech-
nological change, the myriads of SQL applications would become legacy applications
to be emulated on, say, XQuery interfaces—nowadays a rather weird imagination.

Caching over the Entire User-to-Data Path 87

7 Open Problems

We have considered the entire user-to-data path in Web applications and have discussed
the caching problems occurring under a view which separated the specified problems.
Web caching achieved by four different kinds of caches targets at the minimized com-
munication effort and freshness of single Web objects, whereas DB caching attempts to
perform as much query evaluation as possible (and cost-effective) in caches close to the
edge of the Internet—both to primarily reduce the user-perceived delay of Web re-
quests. In contrast to Web caching where only identifier-based access is supported for
Web objects, declarative and set-oriented query processing of database records is in the
focus of DB caching.

In the future, fragment-enabled fine-granular caching can essentially improve the
effectiveness of all kinds of Web caches. Furthermore, various protocol refinements
seem possible to improve caching and content delivery of uncacheable HTTP content
[28]. For example, pushing the functionality of uncacheable content generation to the
network edge may have a substantial effect. Another promising area is the monitoring
and recognizing of access patterns in caches and exploiting their results in prefetching
schemes. For DB caching, we seem at the beginning of a promising research area con-
cerning constraint-based and adaptive DB caching. Hence, a number of important is-
sues remains to be solved or explored.

So far, all aspects of cache maintenance [6] were excluded. How difficult is it to
cope with the units of loading and unloading? Let us call such a unit cache instance (CI),
which is a collection of records satisfying all RCCs of a cache group for a single root
record. Depending on their complexity, CIs may exhibit good, bad, or even ugly main-
tenance properties. The good CIs are disjoint from each other and the RCC relationships
between the contained records form trees, for example, a cache group consisting of cus-
tomer and order only (CO). Then a newly referenced candidate value (NU) of C.ctype
causes a forest of such trees to be loaded, which, in case of unloading, can be removed
without interference with other CIs. The bad CIs form DAGs and weakly overlap with
each other. Cache group COP in Fig. 6 is an example where several CIs may share
records of cache table P. Hence when loading a new CI, one must beware of duplicates.
Accordingly, shared records must be removed only together with their last sharing CI.
To maintain cache groups with cross constraints can be characterized as ugly, because
CIs may strongly overlap so that duplicate recognition and management of shared
records may dominate the work of the cache manager.

Improvement of adaptivity is another important problem, much more difficult than
in Web caches. How can constraint-based approaches evolve with changing locality
patterns of the workload? To support frequently requested join operations by additional
RCCs or to remove RCCs not exploited anymore needs adaptive RCC specifications!
Hence, for each variation of constraint-based caching, quantitative analyses must help
to understand which cache configurations are worth the effort. For this purpose, a cache
group advisor can be designed to support the DBA in the specification of a cache group
when the characteristics of the workload are known. Here, the expected costs for cache
maintenance and the savings gained by predicate evaluation in the cache can be deter-

88 Theo Härder

mined thereby identifying the trade-off point of cache operation. For example, starting
with the cache tables and join paths exhibiting the highest degrees of reference locality,
the cache group design can be expanded by additional RCCs and/or tables until the op-
timum point of operation is reached. On the other hand, such a tool may be useful during
cache operation by observing the workload patterns and by proposing or automatically
invoking changes in the cache group specification. The kind of self-administration or
self-tuning opens a new and complex area of research often referred to as autonomic
computing.

Other interesting research problems occur if we apply different update models to
DB caching. Instead of processing all (transactional) updates in the backend DB first,
one could perform them in the cache (under ACID protection) or even jointly in cache
and backend DB under a 2PC protocol. Such update models may lead to futuristic con-
siderations where the conventional hierarchic arrangement of frontend cache and back-
end DB is dissolved: If each of them can play both roles and if together they can provide
consistency for DB data, more effective DB support may be gained for new applications
such as grid or P2P computing.

References

[1] Akamai Technologies Inc.: Akamai EdgeSuite. http://www.akamai.com/en/html/services/
edgesuite.html

[2] Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.:
Cache Tables: Paving the Way for an Adaptive Database Cache. Proc. 29th Int. Conf. on
Very Large Data Bases (VLDB’03), Berlin (2003) 718–729

[3] Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A Dynamic Data Cache for
Web Applications. Proc. 19th Int. Conf. on Data Engineering (ICDE’03), Bangalore, India.
(2003) 821–831

[4] Anton, J., Jacobs, L., Liu, X., Parker, J., Zeng, Z., Zhong, T.: Web Caching for Database
Applications with Oracle Web Cache. Proc. 2002 ACM SIGMOD Int. Conf. on Manage-
ment of Data, Madison, Wisc. (2002) 594–599

[5] Bello, R. G., Dias, K., Downing, A., Feenan, J. J., Jr., Finnerty, J. L., Norcott, W. D., Sun,
H., Witkowski, A., Ziauddin, M.: Materialized Views in Oracle. Proc. 24th Int. Conf. on
Very Large Data Bases (VLDB’98), New York (1998) 659–664

[6] Bornhövd, C., Altinel, M., Mohan, C., Pirahesh, H., Reinwald, B.: Adaptive Database
Caching with DBCache. Data Engineering Bulletin 27:2, (2004) 11-18

[7] Brodie, D., Gupta, A., Shi, W.: Accelerating Dynamic Web Content Delivery Using Key-
word-Based Fragment Detection. Proc. Int. Conf. on Web Engineering, Munich, LNCS
3140, Springer (2004) 359-372

[8] Dar, S., Franklin, M., Jónsson, B., Srivastava, D., Tan, M.: Semantic Data Caching and Re-
placement. Proc. 22nd Int. Conf. on Very Large Data Bases (VLDB’96), Mumbai (1996)
330–341

[9] Goldstein, J., Larson, P.-A.: Optimizing Queries Using Materialized Views: A Practical,
Scalable Solution. Proc. 2001 ACM SIGMOD Int. Conf. on Management of Data, Santa
Barbara, CA (2001) 331–342

Caching over the Entire User-to-Data Path 89

[10] Haustein, M., Härder, T.: Fine-Grained Management of Natively Stored XML Documents.
submitted (2005)

[11] Härder, T., Bühmann, A.: Query Processing in Constraint-Based Database Caches. Data
Engineering Bulletin 27:2 (2004) 3-10

[12] Härder, T., Bühmann, A.: Value Complete, Domain Complete, Predicate Complete—
Magic Words Driving the Design of Cache Groups, submitted (2005)

[13] Halverson, A., Josifovski, V., Lohman, G., Pirahesh, H., Mörschel, M.: ROX: Relational
Over XML. Proc. 30th Int. Conf. on Very Large Data Bases (VLDB’04), Toronto (2004)

[14] IBM DB2 Universal Database (V 8.1). http://www.ibm.com/software/data/db2/
[15] IBM Cloudscape. http://www.ibm.com/software/data/cloudscape/
[16] Jin, S., Bestavros, A.: GreedyDual*: Web Caching Algorithms Exploiting the Two Sourc-

es of Temporal Locality in Web Request Streams. Proc. 5th Int. Web Caching and Content
Delivery Workshop (2000)

[17] Keller, A., Basu, J.: A Predicate-Based Caching Scheme for Client-Server Database Ar-
chitectures. VLDB Journal 5:1 (1996) 35–47

[18] Krishnamurthy, B., Rexford, J.: Web Protocols and Practise: HTTP/1.1, Networking Pro-
tocols, Caching, and Traffic Measurement, Addison-Wesley, Reading, MA (2001)

[19] Larson, P.-A., Goldstein, J., Zhou, J.: MTCache: Mid-Tier Database Caching in SQL Serv-
er. Proc. 20th Int. Conf. on Data Engineering (ICDE’04), Boston, MA (2004) 177-189

[20] Larson, P.-A., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-Tier Database Caching for
SQL Server. Data Engineering Bulletin 27:2 (2004) 35-40

[21] Levy, A. Y., Mendelzon, A. O., Sagiv, Y., Srivastava, D.: Answering Queries Using
Views. Proc. 14th ACM Symposium on Principles of Database Systems (PODS’95), San
Jose, CA (1995) 95–104

[22] Oracle Corporation: Internet Application Sever Documentation Library, http://otn.ora-
cle.com/documentation/appserver10g.html

[23] Podlipinig, S., Böszörmenyi, L.: A Survey of Web Cache Replacement Strategies. ACM
Computing Surveys 35:4 (2003) 374–398

[24] The TimesTen Team: Mid-tier Caching: The TimesTen Approach. Proc. 2002 ACM SIG-
MOD Int. Conf. on Management of Data, Madison, Wisconsin (2002) 588–593

[25] Tsimelzon, M., Weihl, B., Jakobs, L.: ESI language specification 1.0 (2001),
http://www.esi.org/language_spec_1-0.html

[26] Weikum, G.: Web Caching. In: Web & Datenbanken – Konzepte, Architekturen, Anwen-
dungen. Erhard Rahm/Gottfried Vossen (Hrsg.), dpunkt.verlag (2002) 191-216

[27] W3C Recommendations. http://www.w3c.org (2004)
[28] Zhou, Z., Mao, Y., Shi, W.: Workload Characterization of Uncacheable HTTP Content.

Proc. Int. Conf. on Web Engineering, Munich, LNCS 3140, Springer (2004) 391-39

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 91-109, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reweaving the Tapestry: Integrating

Database and Messaging Systems in the

Wake of New Middleware Technologies

Sangeeta Doraiswamy1, Mehmet Altinel1, Lakshmikant Shrinivas2,
Stewart Palmer3, Francis Parr3, Berthold Reinwald1, C. Mohan1

1. IBM Almaden Research Center, San Jose, CA
2. University of Wisconsin-Madison, Madison, WI

 (while on assignment at IBM Almaden Research Center)
3. IBM T.J. Watson Research Center, Hawthorne, NY

{dorais, maltinel, slp, fnparr, reinwald, mohan}@us.ibm.com, lshrinivas@wisc.edu

Abstract. Modern business applications involve a lot of distributed data
processing and inter-site communication, for which they rely on middleware
products. These products provide the data access and communication frame-
work for the business applications.
Integrated messaging seeks to integrate messaging operations into the data-
base, so as to provide a single API for data processing and messaging. Client
applications will be much easier to write, because all the logic of sending and
receiving messages is within the database. System configuration, application
deployment, and message warehousing are simplified, because we don't have
to manage and fine-tune multiple products.
Integrating messaging into a database also provides features like backup, re-
store, transactionality & recoverability to messages. In this paper, we'll look
at some aspects of messaging systems, and the challenges involved in inte-
grating messaging such as message delivery semantics, transaction manage-
ment and impact on query processing.

1 Introduction

Over the last decade, we have been witnessing a sea change in computing platforms.
Proliferation of Internet technologies, advances in consumer hardware products, and
availability of pervasive network bandwidth have fueled the development of a new class
of Web-based applications. The foundation of this revolution was laid down by the dra-
matic advances in middleware technologies and products. New middleware standards
such as J2EE [7], and .NET [9], and service-oriented architectures like Web Services
[16] have stimulated the development of highly dynamic e-Business infrastructures.
Among the many services and components in this new framework, messaging systems

92 Sangeeta Doraiswamy et al.

have emerged as a key component of this enterprise infrastructure. The current trend in
middleware architectures indicates that messaging systems will strengthen their role in
future middleware infrastructures towards so-called Message-Oriented Middleware
(MOM) systems.

Early messaging systems functioned solely as queue managers. In this limited role,
they offered queued transaction processing and provided basic services such as security,
configuration, performance monitoring, recovery, etc. The common belief was that da-
tabase systems already covered these features and a full-function messaging system
only duplicates them [6]. This viewpoint changed dramatically as messaging systems
evolved in the midst of middleware infrastructures. Message queuing systems focus on
providing high performance transactional access in cases where there is a high rate of
message insertion and deletion to a large number of independent destinations where on
average there are few or even zero messages waiting to be received on any individual
destination at any point in time. Their new features are sufficiently more complex and
sophisticated that providing the same level of functionality in a database system is out
of the question. Extended delivery models, highly scalable asynchronous message han-
dling, distributed network protocols and processing, message-specific multiple quali-
ties of service are just a few features of advanced messaging systems. In general, it is
not feasible to contain these typical messaging system features inside a database sys-
tem. In its new role, a messaging system is a core member of an advanced middleware
infrastructure. It is the backbone of middleware that glues all other middleware compo-
nents together. New middleware architectures and standards clearly separate database
systems as external data sources. In this model, messaging systems are decoupled from
database systems and they utilize a database system only as a (relational) “data source”.

Messaging applications have the important characteristic that at any point in time,
a significant amount of system and application data is in flight (i.e., stored) in message
queues. Hence, messaging systems face two big data management challenges: (1) Cop-
ing with increased number of messages and sheer volume of data, (2) Processing the
data in message queues to provide a real-time snapshot of the state of a business for crit-
ical decision making. Particularly, messaging systems are expected to provide elabo-
rate, scalable data management functions such as powerful message selection (filter-
ing), aggregation, transformation, etc., besides their traditional networking functional-
ity. In other words, messaging systems have been slowly transformed into a new type
of database system for transient and distributed data.

On the other side, database system vendors acknowledged the rise of middleware
systems and realized the importance of seamless integration into middleware infrastruc-
ture. Several major database system vendors made the strategic decision to extend their
database engines with core messaging capabilities. This way, they were better connect-
ed to a new class of applications, while applying scalable data management techniques
(which they excelled in for the last 25 years) to messaging operations. Furthermore,
they took advantage of built-in messaging support to develop more effective database
services such as data replication or query notification services.

Despite the fact that early messaging systems had a broad range of common char-
acteristics with database systems, the two systems developed and grew independently
as stand-alone systems. Messaging systems are characterized by different inherent se-

Reweaving the Tapestry 93

mantic variances and different levels of support for similar functionalities. Today, in-
dependent market segments have been established and different standards have been
adopted in each world. As we will discuss in this paper, these inherent differences make
the integration of database and messaging systems very challenging.

Modern database and messaging systems share similar functionality, but differ in
several aspects. We believe that database and messaging systems can complement each
other's technology in many ways. They can come together and mutually benefit from
their features in delivering superior services for their applications. In fact, some ad-
vanced messaging systems already take advantage of database systems.

In this paper, we explore integration aspects of database and messaging systems
from two perspectives. From the messaging system perspective, we identify database
features that help messaging systems deliver their functions more effectively. From the
database system perspective, we argue that database systems should utilize advanced
features of messaging systems instead of trying to re-invent and re-develop them. Our
claim is that a loose integration model is more appropriate for database and messaging
systems. This integration model not only exploits the synergy of both systems but also
allows them to grow more efficiently in their own domains. There are many obstacles
and challenges in achieving such a successful database and messaging system integra-
tion. We highlight several of them and present our first attempt at introducing a research
prototype implementation for an integrated database messaging system.

The rest of the paper is organized as follows. We start by describing state-of-the-art
functionality in advanced messaging systems and new technologies built around them.
We discuss the challenges in bringing advanced messaging systems and database sys-
tems together (section 2 and 3). Next, we provide a snapshot of current integrated data-
base messaging systems (section 4). We then present our research prototype for an in-
tegrated database messaging system (section 5). It is a loose, federated integration ap-
proach that keeps the two systems separate but seamlessly integrated when necessary.
Finally, we conclude the paper by speculating on possible future directions for database
and messaging system integration (section 6).

2 Advanced Messaging Systems — The Frontier Beyond
Basic Queuing

In this section, we discuss the main features supported in today’s advanced messaging
systems, point to a commercially available industrial-strength product as a reference
implementation, and briefly discuss the evolving role of these systems.

2.1 Features of Advanced Messaging Systems

The salient features of today’s advanced messaging systems include:
Standards and JMS: With the advent of J2EE environments, the standard Java Mes-
sage Service (JMS) Specifications and Messaging API [12] was introduced. Providers

94 Sangeeta Doraiswamy et al.

of messaging software supported these specifications either with Java implementations
or by wrapping their products with Java to support the standard API. Most advanced
messaging systems hence play the role of “JMS providers” and support the following
JMS features (For detailed information please see [12]):
Point-to-Point Messaging: A producer sends a message onto a “queue”; one or more
consumers may compete to receive from the queue, with each message being received
and removed from the queue by a single consumer. The “sender” and “receiver” are un-
aware of each other and the message stays on the queue until it has been consumed.
Publish/Subscribe Messaging: Publish/subscribe allows publishers to publish infor-
mation such as weather or stock quotes to a “topic” which many different applications
may subscribe to. Publishers and subscribers are generally unknown to each other and
one published message may be received by any number of subscribers. Subscriptions
may be declared “durable”—i.e., a subscribing client may register interest in a topic,
disconnect and connect back at a later point in time and be able to retrieve matching
messages published in the interim. JMS introduces the concept of an addressable desti-
nation which may have either point-to-point or publish/subscribe behavior.
Asynchronous Message Delivery: JMS APIs allow clients to register a 'listener' object
with a consumer—when a message arrives at the destination for the consumer, a listener
method is invoked by the JMS provider to allow processing of the message.
Persistent and Non-Persistent Messages and Delivery: Persistence properties speci-
fied on a destination or by client applications, determine if the message survives failures
in the messaging system or network. The messaging system must be capable of doing
such things as maintaining a non-persistent copy or storing a persistent copy of the mes-
sage for later delivery to a third application and also publishing a subset of the message
content to an audience of subscribers.
Message Structure: Messages are structured and are comprised of a pre-determined set
of header fields, property fields (name, value pairs) and a body (that can be one of five
pre-defined Java types in the case of JMS, including a text type that is used for XML
messages). This standardization allows new applications to be interwoven transparently
into the messaging framework. The JMS API allows a subset of the SQL '92 syntax to
be used in selector expressions for filtering messages based on values in the header and
properties fields, for purposes such as routing of messages.

MOM offerings support and extend their role of being JMS providers by catering
to the J2EE and .NET environments and incorporate support for several sophisticated
features including:
Extended Delivery Models: Advanced messaging systems provide a wider variety of
delivery modes including:
– anycast: a message is sent to a number of potential consumers and is given to exactly

one of them
– unicast: a message is sent from one producer to exactly one consumer, and
– multicast: a message is sent from one producer to a number of consumers.
Multiple Qualities of Service and Transaction Support: A range of qualities of serv-
ice from best effort up to guaranteed, in-order, exactly once delivery are supported, im-

Reweaving the Tapestry 95

plying support for both looser transactional models and semantics as well as the strict
ACID transactions that database systems traditionally support. Support for timing from
low latency, real time notification of events and messages to bulk storage of messages
for later retrieval is built into advanced messaging systems.
Message Transformations and Intelligent Routing: Mediation components deploya-
ble on destinations allow the application designer to specify messaging transformations
and routing on messages in transit (i.e., after they have been produced but before they
are consumed). This powerful feature enables:
– Integration of disparate applications with different message formats; transformations

are linked to the destination versus requiring that applications be aware of each oth-
er's formats and perform conversions at the source or target.

– Augmenting messaging data with reference data retrieved from a database—prior to
routing the message elsewhere.

– Building a warehouse of messages for audit, error recovery, data mining, etc.
Interoperability: Advanced messaging must support new emerging standards and
practices such as Web Services, firewalls, tunneling, and digital key management. They
must also allow for interoperability of different messaging products between different
enterprises.
Scalable, Reliable, Distributed Processing: As increasing amounts of corporate data
flow through the messaging systems, scalability and reliability factors become critical.
These systems must sustain rates of tens of thousands of persistent messages per sec-
ond. To accommodate such needs, messaging systems maybe deployable in a network
configuration—i.e., a “bus” comprised of smaller messaging “nodes” providing multi-
ple points for producing and consuming clients to attach to, as depicted in Fig. 1

Each messaging node supports all requisite messaging functionality. Location
transparency—i.e., support for a producer/consumer to attach to any node in this bus
and send/receive messages to/from a destination without knowledge of which node in
the bus persists messages for the destination is an integral feature of this configuration.
Nodes communicate with each other via internal distributed protocols, cooperating to-
gether to effect a messaging fabric which gets data in flight distributed to all appropriate
locations. Support exists for features such as high availability, adaptive routing in the
case of link failures, load balancing, integrated administration, etc. Information as to:
– where messages for a particular destination are persisted in the bus,
– how and on which nodes to persist messages that flow through a bus so QoS guaran-

tees can be satisfied,
– how to service remote receive's (i.e., subscriber requests on one node while the mes-

sages for the destination reside on another node),
– reconciling messaging state and data after a crash, etc., is built into these systems,

freeing administrators from having to administer/manage such complexities and sim-
plifying application program development. Such systems run in a variety of different
operating environments from large clusters of SMPs (with support for features such
as workload balancing, partitioning of destinations, failover, etc.) to small diskless
edge servers where messages are persisted elsewhere in the network.

96 Sangeeta Doraiswamy et al.

Optimized and Scalable Matching Engine: While database systems are good at han-
dling a single query against hundreds of thousands of rows, a publish/subscribe system
has to solve efficiently the inverse problem—that of evaluating a single published mes-
sage against hundreds of thousands of subscription criteria, which can be thought of as
queries, and delivering the messages with low latency. While it is possible to build such
logic into the database system, low latency requirements may not be met if the database
system requires data to be persisted for it to perform matching. A highly efficient and
optimized matching engine is thus a critical component in any advanced distributed
messaging system. The messaging system will do local matching for the local subscrib-
ers and will forward the published message to other messaging nodes to do matching
for their local subscribers.
Systems Management and Tooling Support: Advanced messaging systems must of-
fer rich, easy-to-use administrative, performance monitoring and tooling support for
managing the entire system. Support for tools that ease building of messaging work-
flows, deployment of mediation components, etc. must be included to enable rapid ap-
plication development.

2.2 The Enterprise Service Bus

The next step in the evolution of advanced messaging systems is the central role that
they play in an Enterprise Service Bus (ESB). For the purposes of this paper, we adopt
the Gartner definition of the ESB—i.e., “a standards-based message-bus capable of
linking together standards-based components written to Web standards and other

Fig. 1 Messaging Bus, Nodes, Clients, Destination, and Mediation Topology

Messaging Topology

Destination

Producer

Mediation

NODE A

NODE D

A
p

p
lic

a
tio

n

Consumer

NODE B

A
p

p
lic

a
tio

n

Consumer

NODE E

NODE C

MESSAGE BUS

Reweaving the Tapestry 97

standards”. Advanced messaging systems provide functionality to the ESB and allow
applications to integrate with an ESB. ESBs provide the means for building and deploy-
ing Service-Oriented Architectures (SOA)—an application architecture within which
all functions are defined as independent services with well-defined invokable interfaces
which can be called in defined sequences to form business processes.

 Advanced Messaging system functionality in the ESB includes standards support
(JMS, Web Services, etc.), multiple messaging transport protocols (SOAP/HTTP, Mul-
ticast, etc.), event driven (publish/subscribe), demand driven (request/reply) and store-
and-forward computing models, intelligent routing and transformation services (medi-
ations). To further quote from [1], Gartner predicts:

“ESB will take messaging to the next level. In addition to simply improving the
manageability and throughput of enterprise intersystem information traffic, the new
ESB-based platforms will include support for such fundamentals as multiprotocol serv-
ice-oriented architecture (transcending the current quality of service limitations of Web
services), event-driven architecture, coordinated systems management, business activ-
ity monitoring and other high-level enterprise-scope expansions to the quality of service
of modern IT. More than any other technological advance, the transition of the core ap-
plication platform infrastructure from RPC-based to ESB-based will enable enterprises
to take a major step toward routine real-time-enterprise agility in their information
processing.
Gartner predicts that the industry transition to messaging and ESB as the core applica-
tion platform infrastructure model will mark an inflection point—triggering a new,
massive wave of innovation around businesses' use of their information resources, cap-
italizing on the architecture of events.”

3 What Can Databases Do for Advanced Messaging
Systems?

Database systems play two diverse, important roles in conjunction with any advanced
messaging system. In the first, more limited, role, databases serve as a natural choice
for use as persistent “data stores” that messaging systems interface with (via standard
mechanisms such as JDBC), to reliably and transactionally store and retrieve messaging
data and state information. The messaging system may choose to maintain all of its data
and information in its own layer, only using the database for satisfying higher level QoS
guarantees that require messaging data to survive across client/system failures.

A more powerful role that database systems can play in conjunction with advanced
messaging systems calls for closer synergy between the messaging and database com-
ponents to more fully exploit the rich functionality that modern databases afford, while
providing SQL/XQuery application programmers access to messaging data via pro-
gramming models they are more familiar with. Apart from enabling a new class of da-
tabase applications that can now include querying and interacting with messaging data,
databases become an important source of information that can connect and interoperate
with the ESB. The next two sub-sections further elaborate upon these two roles.

98 Sangeeta Doraiswamy et al.

3.1 Database as the Message Store

In this scenario, the database serves as a backing store. Messaging systems exploit some
integral database features (while imposing others that several commercial DBMS ven-
dors now support) including:
Storage Definition, Management, and Underlying Media/Fabric Exploitation:
Messaging data maybe stored in one or more database tables—typically messages for
one or more similar queues may be stored in a single database table allowing adminis-
trators to configure the table characteristics appropriately.
Buffer, Cache, and Spill Management: Messaging data is generally short-lived—a
producer publishes (inserts) messages to a destination (table) and a subscribing con-
sumer consumes (deletes) the message very close to the time at which it was inserted;
thus, database pages that hold these messages are expected to still be in the database
buffer cache affording consumers quick access.
Index Creation, Management, and Reorganization: Messaging data generally have
unique IDs; an index on the ID allows for efficient and ordered retrieval of messages.
Due to the high intensity of inserts and deletes, indexes may get unbalanced and opti-
mizer statistics may become unreliable, requiring the database system to detect, account
for and correct these situations.
Latching and Lock Management: Consumers must not block on publishers (and vice
versa) or on each other; hence, row-level locking support is mandated, while lower iso-
lation semantics such as the ability for scans to “skip” over locked messages, read “un-
committed” messages during message retrieval, etc., are highly desirable. Messaging
systems at restart may scan database tables to recreate their in-memory state and locks
held by in-doubt transactions must not block the restart.
Transaction Management and Coordination: Messaging systems may need to per-
sist messaging data and state information transactionally.

Given the distributed, asynchronous nature of messaging applications, transactions
are typically used in messaging operations in the following manner:

1. A “producer” inserts messages to a destination transactionally:
SEND MESSAGE M1 TO DESTINATION D1
COMMIT

2. The messaging system may need to persist and propagate this message to another
node that is designated as the “owner” of the destination; this propagation hap-
pens as part of one or more purely internal transactions that is completely decou-
pled from the user's original transaction. Advanced messaging systems ensure
that local 1PC transactions are used in this step, even if the propagation is to a tar-
get destination on a remote machine with its own backing store, using protocols
that involve careful orchestration of runtime sequencing actions paired with the
appropriate handshake and reconciliation restart steps.

Reweaving the Tapestry 99

3. A consumer client in a separate transaction consumes this message via:
RECEIVE MESSAGE M1 FROM DESTINATION D1
COMMIT

Based on the QoS guarantees, the messaging system may persist the messages and
message delivery notices to its backing store either synchronously in a purely local da-
tabase transaction (but in sync with the user's original transaction), asynchronously
(forming batches from messages spanning user transactions and persisting these in a
single transaction), or not at all (as in the case of non-persistent messages). Even in the
'synchronous' case, the database transaction is decoupled from the user transaction thus
avoiding two phase commit (2PC).

Hence, unless the application specifically dictates use of a 2PC protocol by combin-
ing a messaging operation and a non-messaging operation within the same transaction
employing an external transaction manager that coordinates this “global” transaction,
advanced messaging systems do not use 2PC transactions for any internal work. In sit-
uations where an external coordinator is involved, the messaging system (and hence the
underlying database) may be enlisted as a participant, in which case the database may
need to support the X-Open standard XA Resource Manager APIs as specified in [21].
High Speed, Market Hardened, and Scalable Logging Services: Messaging data
may need to be persisted to the database as part of each user transaction, causing log
forces at commit time to become a bottleneck. Additionally, “message consumption”
(deletes) is a common operation and its runtime performance can be enhanced if data-
base systems minimized logging of the deleted data employing mechanisms like:
– logical deletes—i.e., at runtime the row is marked deleted and sometime after trans-

action commit, it is physically removed from the data page—so the contents of the
row do not need logging.

– non-logged temporary tables—i.e., tables for which data modifications are not
logged; these can be used to store non-persistent messaging data.
Messaging systems also benefit from standard database functionality such as re-

start, media failure, point-in-time, and remote site recovery capabilities, cluster fabric
utilization and high-availability/recovery orchestration.

3.2 Improved Database and Messaging Synergy

Database systems can play a double role in solutions that involve messaging interac-
tions. They can serve as the backing store for persistent messages. More importantly, if
messaging and database systems co-operated more closely on message schema and typ-
ing information, and database systems could access messaging destinations and data,
database application developers can rapidly develop solutions that require access to
both database and messaging data. Thus, the following features of database systems
could be better exploited:
Storage of Message Payloads in Separate Column(s) in the Database Table: If the
messaging record format is known, the message body could be stored in a set of SQL
columns, to allow querying parts of the message. Storing the payload in a native XML

100 Sangeeta Doraiswamy et al.

data type column allows for powerful content-based querying of messages, using XPath
expressions, for example.
Message Warehousing and Replay Functionality: To allow tracking and analysis of
messaging data. The rich set of business intelligence tools that most databases support
can be employed against messaging data.
Database system support for extensions such as the ones below would allow database
SQL/XQuery programmers to more easily interact with messaging systems:
Enabling the Database for Asynchronous Operations: Message triggers automatically
receive arriving messages and drive stored procedures or SQL/XQuery fragments with
the arriving message as input parameters.
Use of SQL, XQuery, and XPath Support: APIs that database application program-
mers are familiar with to allow Search/Update/Join/Aggregation operations, etc. on
messaging and non-messaging data in a single query, if so required. Support for syntax
such as SELECT FROM DELETE (described in [1]) allow for efficient set-based mes-
sage consumption.
Publishing to a Messaging Destination: Via database triggers or database replication
mechanisms, database change information can be tracked and published to the messag-
ing system allowing database systems to be “producers” of information. This publishing
mechanism will need to be highly scalable.
Storing Durable Subscriptions in the Database: Additional support for asynchronous
mechanisms that notify the subscriber when a matching message arrives is required.
Consume-with-Wait Support: To allow consumers to wait for a message to become
available on a destination (versus continual polling).

4 A Survey of Database and Messaging System Integrations

Several commercial offerings of messaging and database integration solutions have
been available for over a decade. In this section, we include a brief description of some
of these products, classified by the integration strategy they have chosen to implement.

4.1 Database System's Use of Messaging Systems

Database-Specific Messaging and Queuing: In the nineties, [6] discussed queuing
characteristics and made the case that queues are databases. Accordingly, some data-
base systems proceeded to build in extensions to their engines, to provide support for
built-in messaging through first class queue objects that reside in and are managed by
the database system. Messaging system functionality is incorporated inside the database
system, in this style of integration. These solutions have built in engine modifications
for efficient “matching” of events to subscriptions, skip-lock isolations so getters can
pick up the next “available” message in a queue, Consume-with-wait semantics, etc.

Reweaving the Tapestry 101

Oracle's AQ product falls in this category, providing proprietary internal APIs (PL/
SQL packages) as well as support for JMS APIs for messaging operations such as queu-
ing and de-queuing of messages, DDL support for creating queues in the database, set-
ting up routing rules, etc. Point-to-point and Publish/Subscribe messaging models are
supported and more esoteric features such as tracking origins of a message for auditing,
etc. are available. A good summary of Oracle AQ's capabilities can be gleaned from [3].
Microsoft SQL Server's Service Broker (in the Yukon release) architecture documented
in [20], offers SQL extensions (SEND/RECEIVE verbs) for messaging and introduces
several additional database objects (contract, service, dialog, etc.) to build its messaging
framework, apart from hosting queues in the database; “service programs” (i.e., stored
procedures, application programs) encapsulate the application logic. HP/Tandem's
Non-stop SQL-MX [7] offers messaging support via SQL extensions.
Interface with a Messaging Engine: While [6] made the case for queues in the data-
base, messaging systems requirements have greatly matured since then. More recent
work in [5] calls for more sophisticated feature support and refers to issues such as those
documented earlier in section 2.1. A less stringent flavor of “light integration” hence
chooses to house only the messaging data in the database, integrating with external mes-
saging systems, thus leveraging their highly advanced features versus requiring to build
all of this support into the database.

IBM/DB2 [11] uses this approach for exploiting database capabilities while lever-
aging the messaging capabilities of the market leading WebSphere MQ product. Sys-
tem-provided functions are used to access the MQ interfaces. Sybase ASE Real-time
messaging [14] follows a similar approach integrating with TIBCO's E4JMS product
via built-in functions that encapsulate the messaging interface calls.

Tab. 1 summarizes the messaging integration approaches adopted by these database
system vendors.

4.2 Messaging System's Use of the Database System

Message-System-Specific Persistence, Transactions, and Logging: In this approach,
the messaging system does not rely on any database system features for supporting mes-
saging functionality—but re-invents several database features for supporting persist-
ence.

IBM's WebSphere MQ (formerly known as MQSeries) [18] family of products of-
fers a comprehensive framework for business integration. The WebSphere MQ product
implements a scalable, optimized, file-based persistence mechanism; the only integra-
tion points with database systems therefore is via standard XA interfaces (to facilitate
global transaction support for messaging and database operations) or via JDBC (for
message augmenting support). Messaging solutions offered by providers such as TIB-
CO [15] and BEA's Weblogic [2] also provide the option of using file stores instead of
database systems for persistence.

102 Sangeeta Doraiswamy et al.

Database as a Persistent Store: In this approach, the messaging system uses a data-
base as a persistent store, to reliably and transactionally save its persistent data.

The default embedded messaging engine in the WebSphere Platform Messaging
(WPM) component of IBM WebSphere Application Server V6.0 [17] incorporates the
features of advanced messaging systems mentioned in section 2.1 and uses this ap-
proach, exploiting the database system's storage, indexing, backup and recovery tech-
nologies to maintain and retrieve persistent state and data. The database system can be
any JDBC compliant database system supported by WebSphere, including the DB2
family of database products, Oracle, Microsoft and Sybase. Several other middleware

Tab. 1 Comparison of Integration Approaches

Messag-
ing

Integra-
tion

Messag-
ing API

Transac-
tions

Supported
?

Message
Model

Predi-
cates for
message
selection

Operates
on sets of
messages

?

Oracle
AQ

Native to
DB

PL/SQL,
C++,
Java

Yes Object
type

Arbi-
trary
predi-
cates

No

Micro-
soft
Service
Broker

Native to
DB

SQL
exten-
sions

Yes Mes-
sage
body
column

Very
Limited

Yes

Tandem
Nonstop
SQL/
MX

Native to
DB

Stream +
SQL

Yes Tuples Arbi-
trary
SQL
predi-
cates

Yes

DB2
MQ
Func-
tions

Interface
with
Messag-
ing
Engine

Built-in
func-
tions

Un-
coordi-
nated

Scalar
message
body

MQ
selectors

Yes (side
effects)

Sybase
ASE

Interface
with
Messag-
ing
Engine

Built-in
func-
tions

Multiple
models

Scalar
message
body

JMS
selectors

No

Reweaving the Tapestry 103

offerings, including those from BEA (Weblogic) and Sonic MQ [13], use a similar ap-
proach.

4.3 Shortcomings of These Approaches

While incorporating all of the functionality advanced messaging systems must support
into the database engine (i.e., the native integration approach) maybe theoretically pos-
sible, given the exponential and continuing growth trends of messaging systems and
their role in the ESB, market realities are such that database systems that attempt this
will always be in the catch-up mode. Also, as previously mentioned, significant invest-
ments at the database engine level are needed to support core requirements of messag-
ing listed in section 2.1, including those of low-latency, interoperability, support for
looser transaction semantics, to name a few. Enhancing the database system engines to
better integrate with the existing systems opens up new opportunities, eases application
programming and allows database systems to flow information into the enterprise.

Similarly, advanced messaging systems could exploit features of database systems
that have been employed in mission-critical deployments for a few decades now, versus
attempting to rebuild all of this technology (i.e., the pure messaging approach). Mes-
saging systems must cooperate more closely with database systems opening up admin-
istration APIs, etc. for other applications to integrate more closely and avail of their fea-
tures.

The next section focuses on describing a prototype of an integration approach that
leverages the strengths of each of these systems.

5 An Integrated Database Messaging Prototype

In this section, we present our integrated database messaging research prototype. The
aim of the prototype was to explore messaging operations in RDBMSs by integrating
with messaging systems. Our main design principle was to provide a convenient and
easy way to manipulate message destinations within the SQL language as if they are lo-
cal tables. In the initial prototype, we decided to support only three basic messaging op-
erations: send, receive and browse.

The prototype has been developed in the context of DB2 UDB by exploiting its ex-
isting features and integrating with WebSphere Platform Messaging (WPM) compo-
nent of the WebSphere Application Server V6.0 product [4, 17]. Message destinations
are accessed through information integration features available in DB2 (WebSphere/II
[1]). We implemented a messaging wrapper to carry out required mappings between the
DB2 engine and WPM. WebSphere/II also provides an infrastructure for transactional
integration. In the prototype, users create local table references (i.e., “nicknames” in
WebSphere/II terminology) to interact with message destinations. However, due to se-
mantic differences and operations, these references must be separated from other nick-
names. We call them “Destinations” in the prototype.

104 Sangeeta Doraiswamy et al.

Note that JMS/WPM message model is essentially non-relational in that every mes-
sage is a Java object. It follows the JMS specification [12]. Additionally, messaging op-
erations have different semantics, unique parameter types, and most importantly they
are not set-oriented. The main job of the message wrapper, hence, becomes the handling
of these differences transparently.

There are three sections in a JMS message: Standard headers, application-defined
properties and body. Header fields can easily be represented with respective column
definitions. However, creating system-supported column structures over the content of
application defined properties and message body can be a daunting task. There must be
common metadata repository for the definitions of column structures, and agreed meth-
ods for composing and decomposing them. This issue was not the immediate focus of
the prototype. Hence, application-defined properties and message body appear as a sin-
gle column in destination definitions.

A high level architecture of our prototype and our modifications within the DB2 en-
gine components are given in Fig. 2. In the rest of this section, we will briefly discuss
these changes. We first describe the SQL language extensions in the parser for message
operations, and then explain the issues in the compiler and message wrapper implemen-
tation. Finally, we present a 2PC optimization that was developed to enhance transac-
tional integration for messaging operations.

Mapping

SEND/RECEIVE to
SELECT FROM UDI

Parser

Compiler

Query rewrites for
complex

predicates (2 Pass
operation)

Runtime

Msg Wrapper

DB2
Engine

WPM
Engine
(WAS) Uses local DB2

as persistent
msg store

Remote
Destinations

SEND/RECEIVE/SELECT
Statements

2PC Optimization
for transactional

integration

Fig. 2 Modified DB2 UDB Components in our Research Prototype

Reweaving the Tapestry 105

5.1 SQL Extensions

In the prototype, we extended SQL with two new statements: Send and Receive. There
was no need to create a new statement for browse operation, because a SQL SELECT
statement is close enough to provide the desired semantics. The SQL extensions are
mostly syntactic sugar on top of SELECT-FROM-UDI [1].

The send statement creates and puts a message into a specific destination. Message
contents can be created using table data. In the below example query, a message is sent
to the stockdisplay destination for each row in the result set of SELECT subquery.

SEND TO stockdisplay ($body)
 SELECT n.name || '#' || CHAR (q.price)
 FROM quotes as q, stocknames n
 WHERE q.symbol = n.symbol

As a result of the send operation, WPM initializes several important message prop-
erties such as message id, timestamp, etc. If the user wants to access this information,
the send statement can be embedded into a select statement just like selecting rows from
the result of insert operation. For details please see [1].

A Receive operation is basically a destructive read from a destination. Hence, it is
internally modeled as an embedded delete operation inside a select statement. Again,
the SELECT-FROM-UDI framework provides the necessary infrastructure to accom-
plish this. It also guarantees the enforcement of required semantics for receive state-
ment throughout the compilation. The following receive statement example gets mes-
sages created in the last hour for stockdisplay destination.

RECEIVE $body
FROM stockdisplay
WHERE MINUTEDIFF(CURRENT TIMESTAMP -

 TIMESTAMP($timestamp)) < 60

5.2 SQL Compiler Issues

Send and receive statements cause side effects. Therefore, there were two main issues
in the SQL compiler: (1) Guaranteeing ordered execution of query blocks during the op-
timization when multiple query blocks are given in a single statement, (2) Handling
complex predicates on message queues (in each query block). The first problem was not
a big issue, because the SELECT-FROM-UDI feature clearly defines query semantics
for select statements with side effects. However, we had to work on the second problem
as WebSphere/II infrastructure does not have adequate support for statements with side
effects.

Obviously, an SQL statement can handle much more sophisticated predicates than
those supported by WPM. Therefore, the SQL compiler must decide on the right set of
predicate pushdowns when complex predicates are issued against message queues. The
key point here is that messaging operations cause side effects on the queues, so push-

106 Sangeeta Doraiswamy et al.

down analysis must be done carefully. A straightforward solution is to perform receive
operation in two steps. In the first step, the query plan can access multiple messages
through a non-destructive browse operation on the message queue with push-downable
predicates. Then, it can apply the complex predicates on the retrieved message set. In
the second step, only the qualifying messages are destructively received from the queue
using unique message ids.

Note that the browse operation described above should lock the messages being ex-
amined to prevent other consumers from destructively consuming them. This is howev-
er not a commonly supported feature, in messaging systems (including WPM) or spec-
ifications. Because all messages being browsed need to be locked, poorly designed que-
ries can adversely affect consuming applications. Ideally, the database isolation level
for the query must be enforced at WPM. But this support is not possible today, so ap-
plications must tolerate the unusual behavior that may arise when complex predicates
are issued against destinations.

Another issue can arise in transaction semantics. WPM does not return a message
on a receive operation if the message was added to the destination by a send operation
issued in the same transaction—whereas many database systems allow a transaction to
delete or browse a row it previously inserted. As a result, transactions involving mes-
sage operations exhibit different behavior that must be also tolerated by the applica-
tions. When inserting into a destination, the normal and expected case is that the “send-
er” will not be a receiver and hence is never presented with the view of available mes-
sages presented to receivers; similarly receivers are not expected to see the destination
as perceived by senders. It is this clear separation of send and receive views of a desti-
nation which allows efficient implementation of send and receive operations on remote
destinations, and prompts a transactional model different from database table opera-
tions where it is a normal case for one application to both read and update rows in a sin-
gle table under one transaction. Getting a message inserted into a queue by a sender and
removed from it by a separate consumer, always takes two transactions in a messaging
system; in contrast, reading a database table and then updating or inserting and/or de-
leting rows from it can be done by one application in a single database transaction.

5.3 Message Wrapper

We implemented a new message wrapper to map messaging operations and to achieve
transactional integration between the RDBMS and WPM. The Message wrapper does
not only offer support for DML operations. DDL operations to create and manage local
references to WPM destinations, and populating local DB2 catalogs are also imple-
mented thanks to the extensible WebSphere/II framework. When a nickname is created
for a WPM destination, the wrapper automatically assigns column structures for stand-
ard message headers, application defined property and message body. The current pro-
totype creates nicknames only for existing WPM destinations.

While generating the corresponding WPM message operations for input SQL state-
ments, the wrapper also performs data transfers. Send and receive operations are han-
dled within a transaction context. Our modifications in the SQL compiler identify exe-

Reweaving the Tapestry 107

cutable portions of input queries by the wrapper. By analyzing the execution environ-
ment, the wrapper generates the right parameters including the predicate syntax for
message selection in the WPM engine. To provide set-oriented semantics, all the avail-
able messages are retrieved (considering an input time-out period) for receive or select
statements. Applications can specify limits on the number of messages that they want
to retrieve.

5.4 2PC Optimization

As mentioned in section 3.1, pure-messaging solutions do not incur 2PC unless they are
application specified and coordinated externally. With integrated database and messag-
ing, database applications on the other hand can commonly choose to update database
tables and invoke messaging operations in the scope of the same transaction. For exam-
ple, when the messaging operation is triggered off by a database change, such as:

INSERT INTO ORDERS VALUES (PART_NUMBER,...)
SEND PART_NUMBER TO SHIP_FROM_WAREHOUSE_Q
COMMIT

Based on the integrated database and messaging solution support, the spectrum of
options on transactional behavior in this case range from the success of the database and
messaging commands being treated as independent of each other, to requiring both op-
erations to succeed for the transaction to commit. In the last, most stringent case that
calls for transaction atomicity, a 2PC protocol may be used. However, 2PC is known to
be expensive, because it requires multiple synchronous forces of the database transac-
tion log and incurs network communication overheads.

However, for the common case where the database system is the transaction coor-
dinator (i.e., there is no external transaction coordinator) and the backing store for the
messaging system and the database impacted by the local updates in the transaction are
the same, solutions that allow for database connection sharing between the database and
messaging system or other means of transaction sharing, are employed to avoid 2PC.
Thus, on Oracle AQ, for example, an API is supported that allows retrieval of the orig-
inal database connection established for messaging operations, while in WPM the data-
base connection for Container Managed Persistence operations and messaging opera-
tions is shared allowing messaging and database updates to share a connection to avoid
2PC.

In our prototype, the local update to the database and WPM's persistent operations
are carried out in the scope of two separate database connections; hence, we employ a
scheme that is based on the XA join/suspend tightly coupled behavior, that allows two
database connections to perform work on behalf of the same transaction; the original
transaction context established by the database update is flowed to the messaging sys-
tem which is flowed back to the database when the messaging system performs its per-
sistent operations. The transaction management functionality recognizes this scenario
and forces the transaction log only once for this transaction.

108 Sangeeta Doraiswamy et al.

6 Conclusions

Middleware infrastructures and messaging systems have evolved dramatically. Today
the functionality gap between database and these systems is much bigger than what it
used to be 10 years ago. This trend changes the computing architectures and forces de-
velopers to reexamine integration models. In this paper, we focused on database and
messaging systems integration on this new computing platform. We described ad-
vanced features in modern messaging systems and argued that database systems should
exploit those features through federated integration architectures rather than attempting
to develop native messaging systems.

We presented a research prototype that we developed to validate and identify po-
tential problems in this approach. We made minor modifications in the DB2 UDB en-
gine and exploited WebSphere Information Integrator features to access an advanced
messaging system, namely WebSphere Platform Messaging. The prototype allows us-
ers to perform messaging and database operation using the SQL language. We also im-
plemented an optimized 2PC transaction mechanism that helps to achieve closer inte-
gration.

There are still many challenges to be tackled. Easy and transparent administration
of integrated database messaging is perhaps the most important one. Another key chal-
lenge is to provide mechanisms inside database engines for scalable asynchronous mes-
sage processing. Despite these difficulties, synergy between database and advanced
messaging systems can bring many advantages to applications by offering the state-of-
the-art features from both systems today and in the future.
Acknowledgments. We would like to thank Stephen Todd, Tim Holloway, Paul Brett,
Hamid Pirahesh, Jim Kleewein, Peter Niblett, Tim Vincent, Connie Nelin, Dan Wolf-
son and Paul McInerney for their help and support. Their insights and invaluable feed-
back influenced every aspect of our project.

References

[1] Behm, A., Rielau, S., Swagerman, R.: Returning Modified Rows—SELECT Statements
with Side Effects, VLDB 2004, Toronto, Canada, September, 2004

[2] BEA Weblogic Platform, http://www.bea.com/
[3] Gawlick, D., Mishra, S.: Information sharing with the Oracle database, H.-A. Jacobsen, ed-

itor. 2nd Intl. Workshop on Distributed Event-Based Systems (DEBS'03), San Diego, CA,
USA, June 2003. ACM Press.

[4] D.H. Brown Associates, “IBM WebSphere Application Server, Version 6 Delivers Busi-
ness Flexibility”, White Paper, http://www-306.ibm.com/software/webservers/appserv/
was/WAS_V6_DH_Brown.pdf, September 2004

[5] Gray, J.: The Next Database Revolution, Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, Paris, France, June 13-18, 2004

[6] Gray, J.: THESIS: Queues are Databases, http://research.microsoft.com/research/pubs/
view.aspx?pubid=496, January, 1995

Reweaving the Tapestry 109

[7] Java 2 Platform, Enterprise Edition (J2EE), http://java.sun.com/j2ee/
[8] Hanlon, M., Klein, J., Linden, R. V., Zeller, H.: Publish/Subscribe in NonStop SQL:

Transactional Streams in a Relational Context, 20th International Conference on Data En-
gineering, Boston, Massachusetts, April, 2004

[9] Microsoft .NET, http://www.microsoft.com/net/
[10] Natis, Y. V., Gartner: Predicts 2004: Application Integration and Middleware, http://

ww4.gartner.com/resources/119000/119085/119085.pdf, Dec 2003
[11] IBM DB2 UDB Manuals: How to use WebSphere MQ functions within DB2, http://pub-

lib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.ii.doc/ad/ciiws-
mqf.htm

[12] J2EE Java Message Service (JMS), http://java.sun.com/products/jms/
[13] Sonic Software, http://www.sonicsoftware.com/products/sonicmq/index.ssp
[14] Sybase Real-Time Data Services, http://www.sybase.com/products/informationmanage-

ment/realtimedataservices
[15] TIBCO Messaging Solutions, http://www.tibco.com/software/enterprise_backbone/mes-

saging.jsp
[16] Web Services Activity, http://www.w3.org/2002/ws/
[17] WebSphere Application server V6.0, http://www-306.ibm.com/software/webservers/

appserv/was/
[18] WebSphere Information Integrator, http://www-306.ibm.com/software/data/integration/
[19] WebSphere MQ, http://www-306.ibm.com/software/integration/wmq/
[20] Wolter, R.: A First Look at SQL Server 2005 Service Broker, http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/dnsql90/html/sqlsvcbroker.asp, July, 2004
[21] X/Open CAE Specification; Distributed Transaction Processing: The XA Specification,

http://www.opengroup.org/onlinepubs/009680699/toc.pdf

110 Sangeeta Doraiswamy et al.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 111-136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Management Support

for Notif icat ion Services

Wolfgang Lehner

Technische Universität Dresden, Germany
lehner@inf.tu-dresden.de

Abstract. Database management systems are highly specialized to efficient-
ly organize and process huge amounts of data in a transactional manner. Dur-
ing the last years, however, database management systems have been evolv-
ing as a central hub for the integration of mostly heterogeneous and autono-
mous data sources to provide homogenized data access. The next step in
pushing database technology forward to play the role of an information mar-
ketplace is to actively notify registered users about incoming messages or
changes in the underlying data set. Therefore, notification services may be
seen as a generic term for subscription systems or, more general, data stream
systems which both enable processing of standing queries over transient data.
This article gives a comprehensive introduction into the context of notifica-
tion services by outlining their differences to the classical query/response-
based communication pattern, it illustrates potential application areas, and it
discusses requirements addressing the underlying data management support.
In more depth, this article describes the core concepts of the PubScribe
project thereby choosing three different perspectives. From a first perspec-
tive, the subscription process and its mapping onto the primitive publish/sub-
scribe communication pattern is explained. The second part focuses on a hy-
brid subscription data model by describing the basic constructs from a struc-
tural as well as an operational point of view. Finally, the PubScribe
notification service project is characterized by a storage and processing mod-
el based on relational database technology.
To summarize, this contribution introduces the idea of notification services
from an application point of view by inverting the database approach and
dealing with persistent queries and transient data. Moreover, the article pro-
vides an insight into database technology, which must be exploited and
adopted to provide a solid base for a scalable notification infrastructure, us-
ing the PubScribe project as an example.

1 Introduction

The technological development in recent years has created an infrastructure which en-
ables us to gather and store almost everything that can be recorded. However, the stored

112 Wolfgang Lehner

data gets frequently lost in the existing varieties of databases. The main reason is that
nobody is willing to browse multiple databases and specifically search these databases
for certain entries.

Multiple methods from a database-technological point of view are trying to lever-
age this very general problem. The context of information integration [26] tries to come
up with an either logically (multi-database systems or virtual database systems) or phys-
ically integrated data set, often seen in data warehouse environments [16]. From a more
application-oriented point of view, methods and techniques coming from the area of
knowledge discovery in databases try to generate hypotheses which might be of some
interest for the users of the data set. The real benefit of this approach is that a user may
specifically focus on these results as a starting point for an interactive analysis [10, 19,
9].

A completely different approach is taken when inverting the current way of inter-
acting with databases by moving from a system-centric to a data-centric behavior [22,
23]. The query-based approach follows the request/response paradigm, where the user
(or client) is posing a query and the (database) system tries to execute the query as fast
as possible. The result is delivered via basic interfaces (like ODBC, JDBC, or CLI) to
the user’s application context. Fig. 1a illustrates this interaction pattern with database
management systems on the one side acting as data providers and clients on the other
side acting as data consumers. Both parties are in a close relationship with each another,
i.e. every client has to know the location and the context of the specific database.

1.1 Publish/Subscribe as the Base for Notification Systems

Inverting the "request/response" idea leads to the communication pattern very well
known as "publish/subscribe" [5], which is used in various situations. For example,
publish/subscribe is utilized in software engineering as a pattern [12] to connect indi-
vidual components. In the same vein, publish/subscribe may be used to build a data-cen-
tric notification service. Notification services consist of publishers, subscribers, and fi-
nally, a (logically single) notification brokering system. Fig. 1b gives a conceptual
overview of the scenario. On the one side, publishing systems (or publishers) are acting
as data providers, generating information and sending data notifications to the broker-
ing component as soon as the information is available. Notifications are collected, trans-
formed into a pre-defined or pre-registered schema and merged into a global database.
Depending on the type of subscriptions (section 3.1), notifications may remain in the
database only for the time span required to notify interested subscribers.

On the other side, subscribers—acting as data consumers—are registering "inter-
est" (information template, profile, ...) providing the delivery of certain notifications us-
ing specific formats and protocols with a pre-defined frequency. The notion of interest
is manifold and will be further discussed in the following section. Furthermore, query
specification and result transmission are decoupled from a subscriber’s point of view.
Once a query is formulated, the user is no longer in contact with the notification system
but receives a notification only if new messages of interest have arrived at the database
system or if a given time interval has passed. The advantage for the user is tremendous:

Data Management Support for Notification Services 113

once a query (in form of a subscription) is specified, the user does not have to wait for
the answer of the query, because the result will be delivered automatically according to
the pre-defined delivery properties.

Obviously, publisher and subscriber are roles associated with certain applications
or (human) users implying that, for example, received notification messages may be
forwarded to another notification system. In this scenario, a single component is then
acting as subscriber and publisher at the same time. The benefit of notification services
from an application point of view consists in the following facts:

• Data providers and data consumers are decoupled and do not know each other—the
connection is purely data-driven.

• Profiles articulating a subscriber’s interest allow (depending on the current system)
a very detailed specification of the requested piece of information.

• Information is delivered only if certain delivery criteria are fulfilled. Therefore, no-
tification systems may be regarded as a core mechanism to tackle the problem of a
general information flood.

1.2 Data-Centric Versus System-Centric Data Delivery

From a database point of view, notification services exhibit properties which have a dra-
matic impact on the way data is treated and queries are executed. Fig. 2 illustrates the
basic principle of the different prerequisites compared to the request/response-driven
querying model. While database queries are executed within transactions and therefore
isolated from each other, the notification evaluation queries are now clustered together
and executed simultaneously [27, 20], thus decreasing the overall query run time and

a) "request/response" paradigm b) "publish/subscribe" paradigm

Fig. 1 Comparison of "Request/Response" and "Publish/Subscribe" Paradigm

114 Wolfgang Lehner

increasing the overall capacity of a notification system. Obviously, handling thousands
of subscriptions within a single system requires specific support from a database system
[30, 3, 20].

To put it in a nutshell, the main difference from a database point of view consists in
the fact that data structures no longer reflect the main object of management. In con-
trast, queries are now efficiently stored, indexed, and transformed, providing the basis
for optimizations with regard to the set of standing queries, which have to be applied to
the stream of incoming event messages. Furthermore, a notification system may com-
prise multiple local (and only partially integrated) schemas according to the registration
of the publisher. Because a publisher may come and go, the set of local schemas is high-
ly volatile, implying an integration process either on-the-fly during the registration of a
standing query or partially by the user itself.

1.3 Application Scenarios

In most application scenarios, notification systems can be seen as an add-on and not as
a full substitute for a regular query-driven database management system. Notification
systems are used in applications requiring a pro-active propagation of information to
specific consumers. In the following, three very different application scenarios are dis-
cussed:

• News service
A very popular and already prospering service implementing a very limited kind of
notification technique may be seen in news services, which send e-mails or short
messages containing abstracts of various news articles on a regular basis (one of the
first was [35] followed by many others like [25]). The functionality of news notifi-
cation services highly varies from system to system. For instance, notifications could
depend only on time stamps or time periods since the last delivery, or they might be
based on the evaluation of specified predicates within subscription templates. For ex-
ample, a notification can be generated if the stock price of IBM reaches a certain val-
ue. Simple news services are often synonymous to the "push service" of documents.

a) "request/response" paradigm b) "publish/subscribe" paradigm

Fig. 2 Query-driven vs. Data-driven Execution

Data Management Support for Notification Services 115

• Business intelligence applications
Combining the idea of a notification service and the concept of data warehousing
[16] leads to the pro-active support of decision support systems. A data warehouse
system provides an integrated, long-term, and logically centralized database to re-
trieve information necessary for decision support, supply chain management, cus-
tomer relationship management, etc. Due to the nature of data warehousing, these da-
tabase applications exhibit specific characteristics with regard to data volume, up-
date characteristics, and aggregation-oriented organization of data. Information
stored in a data warehouse are usually exploited by using pre-defined reports printed
on a regular basis, by interactive exploration using standard OLAP tools, or by ex-
portation into special statistical software packages . In such a scenario, for example,
all sales orders are flowing through a notification system. The system keeps track of
the sold products of a certain category within a specific region and can automatically
re-order the required products. This application domain highly correlates with the at-
tempt of building active data warehouse systems. Notification systems are a neces-
sary requisite.

• Production monitoring
Notification systems in the small (also called streaming systems) are able to monitor
the manufacturing quality of a machine within a long assembly line. The streaming
system has to ensure that incoming event notifications are analyzed and evaluated
against the set of standing queries within a certain period of time. If tolerances are
too high or if a pattern of irregular behavior within the assembly line is discovered,
notification messages are sent out to slow or shut down some machines.
It can be seen that notification services, on the one hand, cover a broad spectrum of

applications and, on the other hand, exhibit a strong impact on the evaluation strategies
for answering multiple standing queries. Moreover, the application areas shown above
motivate the classification of notification systems into the following two classes:

• Subscription systems
A subscription system is used to evaluate a huge number of potentially complex-
structured standing queries on incoming data. In comparison to the characteristics of
a data stream system, each publication reflects an isolated action, i.e. publications of
a single publisher are (except for the schema) not related to each other—which espe-
cially holds for their time stamps. Typical publications, for example, may consist of
large XML documents [32].

• Data stream systems
A data stream system is used to analyze continuous streams of data typically coming
from data sensors. Publications usually arrive periodically and comprise single indi-
vidual values (like temperature values).
In the following, we focus on subscription systems which typically require more ad-

vanced functionality from a modeling as well as an architectural point of view as pro-
posed for example in [31]. For further information on application scenarios in the con-
text of data stream technology, we refer our readers to [15, 2, 6, 4]. Notification systems
and subscription systems are therefore used synonymously.

116 Wolfgang Lehner

1.4 Structure of the Contribution

The remainder of this contribution is focusing on the notification management system
PubScribe, which aims to build a notification system solely based on the publish/sub-
scribe communication pattern and exploits advanced database technology. Therefore,
the following section outlines the basic characteristics of PubScribe in the context of a
general architecture and communication pattern scheme. Section 3 then discusses the
subscription data model used by PubScribe, which will be mapped to a processing mod-
el in section 4. Section 5 finally summarizes and closes the contribution with an outlook
on further work to be done in this context.

2 General Architecture and Characteristics

In this section, we identify and explain a number of different characteristics, which ap-
ply to the family of notification systems, and provide a general overview of the compo-
nents required to build a notification system.

2.1 General Architecture

A notification system basically consists of three major components (back-end, front-
end, and brokering component), which can be seen in Fig. 3. In general, a notification
system accepts event messages and cleans, transforms, and combines these messages
with other data available to the notification system. Finally, individual notification mes-
sages are generated and delivered to the consumer, i.e. subscriber. The general struc-
tures and their functions are as follows:

• Event message provider
The component of an event message provider accepts incoming event messages and
transforms them into a shape which can be processed by the underlying notification
engine (similar to wrapper technology as described in [26]). Usually, each message
is decomposed into multiple rows spread over multiple relational database tables. In
Fig. 3, an event message provider exists for XML documents, for the result of SQL
statements (e.g. in the context of the execution of stored procedures), and for a ser-
vice that periodically crawls specific web sites to retrieve data and propagate them
to the notification system. The output of an event message goes into a message table,
which is exploited by the subscription system.

• Notification message delivery component
The notification message delivery component extracts the results provided by the no-
tification engine and creates appropriate notification messages, personalized either
for a human user or—according to a given message schema—for an application as
consumer. Fig. 3 depicts three different delivery handlers to forward notification
messages via the HTTP-protocol for web access, the SMTP-protocol for use of elec-
tronic mail, and a generic file protocol to store messages in a regular file.

Data Management Support for Notification Services 117

More sophisticated push-based delivery methods require either an adequate network
infrastructure or a cooperating client software. Whenever pushing data to a client is
not directly supported by the underlying transport protocols (i.e. TCP, HTTP, ...),
push services are implemented in an extended pull style. In this case, a specific piece
of software is running in the background on the client side, permanently polling for
new information, and thus, pretending a server push to the client. Such strategies are
called smart pull or pull++. Another technique for simulating push is server-initiated
pull. In this case, the server sends a short notification to the client stating that there
is new data ready for delivery. The client then downloads the notification message
using a regular pull operation. It is worth mentioning here that a notification service
which is logically based on the publish/subscribe paradigm can be implemented us-
ing push as well as pull techniques for data delivery.

• Notification brokering component / notification engine
The central piece of a notification system consists of the brokering component which
is tightly integrated into an underlying database engine to efficiently answer the reg-
istered standing queries for incoming messages. Because the event message provider
and the notification message delivery component are of little interest from a database
perspective, we focus on the brokering component in the remainder of this contribu-
tion.

2.2 General Communication Pattern

Within the PubScribe system we pursue a communication pattern on two different lev-
els. From a user (publisher and subscriber) point of view, the notification service con-
sists of five service primitives, as depicted in Fig. 4.

In a very first step, publishers are requested to register their publications at the no-
tification system (REGISTER primitive), which will set off the initiation of the appro-
priate event message provider and the creation of the appropriate message tables for this
specific publishing component. Even more important, each publisher must submit a
schema definition of the proposed messages. After registration, publishers use the pub-
lish/service primitive to submit event messages for further processing.

Fig. 3 General Architecture of a Notification System

118 Wolfgang Lehner

On the subscriber side, a potential user may issue an INQUIRE primitive to learn
about publishers currently present and their local schemas. The consumer may then de-
cide to place a subscription (standing query) based on their schemas including start,
stop, and delivery conditions (section 3.1) using the SUBSCRIBE primitive. Once a no-
tification message is ready, the notification message delivery component is using the
NOTIFY primitive on the consumer side to deliver the result.

On a lower (communication) level, describing the interaction mechanisms of differ-
ent components within a network of notification systems, the PubScribe system applies
the publish/subscribe paradigm and maps the five service primitives on the application
level to the publish/subscribe communication pattern. The REGISTER and INQUIRE
primitives are mapped onto a so-called one-shot publish/subscribe pattern, implying
that a subscription is only valid as long as a single notification message has not arrived.
More interestingly, the PUBLISH and SUBSCRIBE/NOTIFY primitives are also trans-
lated into a publish/subscribe pattern. After registering, the PubScribe notification sys-
tem subscribes at the publisher and places a subscription to ask for event messages. The
PUBLISH primitive on the application level then corresponds to the PUBLISH primi-
tive on the communication level. Similarly, the SUBSCRIBE primitive of a consumer
is mapped to the SUBSCRIBE primitive at the lower level, and the NOTIFY primitive
is treated as a PUBLISH primitive issued by the notification delivery component (tak-
ing on the role of a publisher with regard to the subscriber).

2.3 Classification of Notification Systems

As a final consideration with regard to the general perspective of notification systems,
we provide some properties which might be used to classify the very broad set of noti-
fication systems. It is worth mentioning that these properties are not completely orthog-

Fig. 4 Communication Pattern in Publish/Subscribe-Notification Systems

Publisher Subscriber

Data Management Support for Notification Services 119

onal to each other, i.e. certain combinations may not make that much sense from an ap-
plication point of view.

Document-Based Versus Data-Stream-Based Notification Systems
The most distinctive feature of a notification system lies in the differentiation between
document-based and data-stream-based characteristics. In the context of document-
based systems, each message consists of an individual entity and is treated separately
from every other message. Especially the "birth" of the message in a document-based
environment is not related to the "birth" of other messages of the same publisher. This
means that from an application point of view, there is no system-relevant correlation of
the publication of individual messages. Typical examples of document-based notifica-
tion systems are news tickers that report on current developments.

The other extreme is characterized by data streams. In this case, the publication of
a message happens periodically in the sense that a message does not reflect an individ-
ual entity, but is comprised of on-going data either to complete or to bring the current
state up-to-date. In the former case, data is added to the message, while in the latter case,
data is overwritten, thus implying that the notification system holds the most current
state with regard to some real-life object. An example for streaming systems is the con-
trol procedure of an assembly line, where sensors are reporting the current state of a ma-
chine on a periodic basis [7, 29].

PubScribe, which serves as an example within this contribution, is a classic repre-
sentative of a document-based notification system. Streaming systems dealing with an
infinite set of tuples are not discussed. The reader is referred to excellent literature like
[15, 24, 3, 14] that focuses on this topic from an architectural point of view.

Time-Driven Versus Data-Driven Notifications
The second characteristic with regard to information delivery is the classification of the
kind of "event" which has to happen in order for a notification to be sent out to the cli-
ent. Notifications are either dispatched periodically after a specified amount of time or
they are initiated due to a data-driven event. A typical example for the first case is to
send out an electronic newsletter every day at 6 p.m. A new letter (or a collection of
accumulated single news articles) is simply sent out after another 24 hours have passed.
Alternatively, a subscriber may be interested in getting notified by the notification sys-
tem aperiodically, i.e. only when a certain event occurs, e.g. a certain stock value passes
a certain threshold. Data-driven events are usually connected to insert or update opera-
tions in the underlying database and result in aperiodic notifications. They are closely
related to the trigger concept of active and relational database systems [21]. In practice,
the combination of both notification modes is most interesting. For example, a user
might want to be informed immediately if the IBM stock falls below a certain value, and
additionally, get a weekly summary for its performance throughout the week.

Full Update Versus Incremental Update
For the subscription management system, it is important to know what to do with data
which was already received by the client through a previous delivery. In case of a thin
client like a simple web browser without any application logic and local storage capac-

120 Wolfgang Lehner

ity, the server always has to deliver a full update to the client. However, if the client is
only interested in the current value of a business figure, e.g. a certain stock value, or if
it is able to combine the values already received with the latest value on its own, the
server system should choose an incremental update strategy, i.e. it will only send the
delta changes and thus save network bandwidth and perhaps server memory as well.
The combination of complex-structured context and the required functionality of delta
propagation leads, for example, to the hybrid data model proposed within PubScribe
(section 3.2).

3 Subscription Message Data Model

In this section, we briefly outline the underlying data model and the operators used to
formulate standing queries. These operators are then subject of optimization and map-
pings to relational database systems, which will be shown in the subsequent section.

3.1 Types and Conditions of Subscriptions

From a theoretical point of view, a subscription may be represented as a mathematical
function which is not yet saturated, i.e. the result of this function is still being computed
or, in other words, the data which the computation of the function is based on is either
not yet complete or changing over time. The bottom line for subscription systems from
a database perspective is that a user registers a query once and regularly receives a no-
tification of the query result derived from the actual state of the underlying data set.
Therefore, the query may be considered the "body" of a subscription, which is subject
to evaluation, if a corresponding delivery condition is met. Furthermore, subscriptions
are instantiated, if corresponding opening conditions are satisfied. Analogously, sub-
scriptions are removed from the system, if the present closing conditions evaluate to
true.

Different Types of Subscriptions
The set of subscriptions can be classified into feasible and non- or not yet feasible sub-
scriptions. A subscription on "the highest prime number twins" may be an example for
a not-yet feasible subscription, because it is (still) unknown whether such numbers exist
at all. Obviously, we have to restrict ourselves to feasible subscriptions. Moreover, we
are able to classify these types of subscriptions in more detail from a data point of view
into the following three categories:

• Snapshot subscriptions
A snapshot [1] subscription may be answered by referring only to the currently valid
information, i.e. the answer may be retrieved by processing only the most current
message of a publisher. Snapshot subscriptions require "update-in-place" semantics.
Example: A subscription regarding the current weather conditions only refers to the
last available information. Old data is no longer of interest.

Data Management Support for Notification Services 121

• Ex-nunc (’from now on’) subscriptions
Ex-nunc subscriptions are based on a set of messages. This set of messages is con-
structed starting from an empty set at the time of the registration of a subscription.
Example: Computing the value of a three-hour moving average of a stock price
starts with a single value for the first hour, the average of two values for the second
hour, and the average of three values for all other hours.

• Ex-tunc (’starting in the past’) subscriptions
Ex-tunc subscriptions are based on data from the past plus current information.
Example: A subscription of the cumulative sum of trading information of a specific
stock needs an initial overall sum, which can be maintained using new messages.

The PubScribe system supports (classic) snapshot-based, ex-nunc and ex-tunc subscrip-
tions. To provide ex-tunc subscriptions, the system has to implement an initial evalua-
tion mechanism, which provides feedback to the user on whether or not this specific
subscription with the specified requirements can be instantiated.

Condition Evaluation Semantics
The evaluation of a subscription query (body of a subscription) is controlled by condi-
tions. The PubScribe system uses the following three conditions to control the execu-
tion and delivery of a result of a subscription:

• Opening condition
A subscription becomes active, i.e. the body and the following two conditions are in-
stantiated as soon as the opening condition is satisfied the first time.

• Closing condition
A subscription is removed from the system as soon as this condition evaluates to true.

• Delivery condition
If and only if the delivery condition evaluates to true, the body of the subscription
gets updated, i.e. messages which have arrived since the last delivery are "merged"
into the current state of the subscription.

Once the opening condition is satisfied, the delivery and closing conditions are evalu-
ated. If the delivery condition is satisfied, the subscription body is evaluated and the re-
sult is delivered to the corresponding subscriber.

If the closing condition evaluates to true, the subscription is removed from the sys-
tem. It is worth to note here that the system provides "at least once" semantics for the
execution of a subscription in the context of an initial evaluation for ex-tunc and one-
shot subscriptions: the delivery condition is checked before the closing condition is
evaluated. Thus, if the delivery condition is satisfied, the subscription body is evaluated
and delivered before a satisfied closing condition removes the subscription from the
system.

122 Wolfgang Lehner

3.2 The PubScribe Message Data Structures

The data model of the PubScribe system consists of data structures and operators de-
fined on these structures to formulate standing queries. The very interesting point with-
in the hybrid modeling approach consists in the fact that the model reflects the duality
of state-based and consumption-based data management by introducing message se-
quences and message sets.

Messages and Message Attributes
The messages produced by registered publishers must follow a message scheme an-
nounced during the registration process of a publisher at the notification management
system. The scheme of a message M = (H, B) consists of a header H = (H1,...,Hn), a
(possibly empty) set of header attributes Hi (1 i n), and a message body B = (B1,...,Bm)
with at least one body attribute Bj (1 j m). Header attributes may be seen as an equiv-
alent to primary key attributes in a relational model [8] without the requirement of def-
initeness and minimality. The instances of attributes are valid XML documents [32, 17]
and must follow an XML-schema [33, 34] definition, locally defined by the publisher.
Attributes without further structuring are so-called basic or single-level attributes.
Moreover, complex-structured attributes are not allowed in the header. Fig. 5 shows a
single message regarding stock information. The complex attribute TRADINGINFO
holds a comment together with the source of the quote.

Message Sets and Message Sequences
Messages of the same type may be collected as sets (unordered with regard to their gen-
eration time) or sequences [28]:

• Message sequence (MSGSEQ)
The data structure of a message sequence holds a list of messages ordered by the ar-
rival time of the message in the system. Each message in a sequence is implicitly ex-
tended by a header attribute ValidTime.

• Set of sequences (MSGSET)
In order to reflect the stable set of information in addition to streaming data, MSG-

StockName StockExchange Price ChangeAbs TradingVolume TradingInfo

<StockName>
Oracle

</Stockname>

<StockExchange>
FSE

</StockExchange>

<Price>
97.50

</Price>

<ChangeAbs>
2.75

</ChangeAbs>

<TradingVolume>
3400

</TradingVolume>

<TradingInfo>
<InfoSource>

W. Lehner
</InfoSource>
<Comment>

buy or die....
</Comment>

</TradingInfo>

header attributes body attributes

Fig. 5 Example for a MSGSET Data Structure

Data Management Support for Notification Services 123

SET structures represent descriptive data to annotate incoming messages. From a
logical point of view, a set of sequences reflects a consistent and (for that specific
moment) complete state at every point in time.

Sample Scenario
Throughout the remainder of this contribution, a consistent example refers to a stock
notification system about current trends, news, comments, and so on. A publisher
StockInfo periodically delivers information about the current stock price added to a
MEGSEQ structure. A second producer publishes comments on a fully incremental ba-
sis (section 2.3), i.e. the set of messages always reflects the current opinion of the pub-
lisher. Obviously, the messages go into a MSGSET structure. Fig. 5 shows an instance
of the StockInfo publisher; Fig. 6 holds an example for a MSGSET regarding comments
and rankings.

3.3 The PubScribe Message Operators

The data structure may be used by operators to specify complex queries. Fig. 7 illus-
trates the data model and the underlying message operators to formulate a subscription.
Within this query, only 5-star-ranked stocks after a join are considered. Based on the
trading information, a dynamic window operation of size 3 is defined. Finally the aver-
age and the total volumes are computed as a result for the user.

The different operators are only sketched within this context. The reader is referred
to [18] and [19] for a detailed description and a more comprehensive example:

• Filter operator
The FILTER() operator is defined for header attributes. Hence, the resulting data
structure holds only messages with values in the header attributes satisfying a given
predicate. A selection criterion is restricted to conjunctive predicates without nega-
tion. Each predicate only contains the operators =, < , > and ~= for textual attributes.
Example:
 [InterestedStocks] FILTER(StockName IN (’Oracle’, ’IBM’))[StockInfo]

• Attribute migration operator
The attribute migration (SHIFT()-) operator allows the transition of a body attribute
to the set of header attributes. The new header attribute must be of an atomic type. A
good example for attribute migration is the definition of groups. For example, an

Fig. 6 Example for a MSGSET Data Structure

StockName Ranking Comment

<StockName>
Oracle

</Stockname>

<Ranking>

</Ranking>

<Comment>
Oracle is a member of the NASDAQ since ...

</Comment>

<StockName>
IBM

</Stockname>

<Ranking>

</Ranking>

<Comment>
IBM has a long tradition and

</Comment>

124 Wolfgang Lehner

EVAL() operator extracts the month out of a time stamp stored in a body attribute.
The SHIFT()-operator moves the newly created attribute to the set of header at-
tributes providing a way to identify values on a monthly basis.

• Internal message computation
The EVAL()-operator is used to perform computations within a single message. In
fact, the model distinguishes three categories of internal message operators:

The first category includes all regular binary scalar functions like PLUS(), MI-
NUS(), MULT(), DIV() and equality operators (GREATER(), ...). Additionally,
the class comprises a set of calendar functions like YEAR(), MONTH(), DAY().
The following example returns the relative change based on the current price, the
price difference, and the turnover.
[ExtendedStockInfo] EVAL(Price, TradingVolume,

ChangeRel:DIV(ChangeAbs, MINUS(Price, ChangeAbs)),
Turnover:MULT(Price, TradingVolume))[StockInfo]

The second category holds aggregation functions like MIN(), MAX(), SUM(), and
COUNT() which are usually used in combination with the COLLAPSE() operator
(see below).
The third category encompasses all operators used to work on the content of com-
plex-structured attributes. EXTRACT() is used to extract pieces of complex-struc-
tured attribute values. COMBINE() does the opposite: it merges two complex-
structured attribute values to a new attribute value.
[ExtractedStockInfo]

EVAL(CommentList:EXTRACT(Comment, TradingInfoList),
InfoSourceList:EXTRACT(InfoSource, TradingInfoList))[StockInfo]

(StockName, StockExchange),

MvgAvgPrice:DIV(MvgSumPrice, MvgCountPrice),

([StockName, StockExchange], ([StockName],
[Price, TradingVolume, TradingInfo])

MvgSumPrice:SUM(PriceGroup),

VolumeGroup:MESSAGES(CURRENT-3, CURRENT:TradingVolume))
(PriceGroup:MESSAGES(CURRENT-3, CURRENT:Price),

MvgCountPrice:COUNT(PriceGroup),
MvgSumTradingVolume:SUM(PriceGroup)

([StockName, StockExchange],
[MvgAvgPrice, MvgSumTradingVolume])

Fig. 7 Example for a Subscription Body

MERGE

FILTER (Ranking ~=’****’)

WINDOW

StockInfo StockRanking

[Ranking, Comment])

EVAL

EVAL MvgSumTradingVolume

SWITCH
delivery
condition

Data Management Support for Notification Services 125

The identity function can be seen as a special form of one of these two operators.
The syntax is abbreviated by just listing the attribute names.

• Generation of static groups
The COLLAPSE() operator allows the definition of static (or: partitioning) groups
with regard to a set of header attributes of a MSGSET or MSGSEQ structure. The
following example groups message entries by the name of the stock value:

GroupedStockInfo COLLAPSE((StockName),
(TradingVolumeGroup:TradingVolume,
 TradingInfoGroup:TradingInfo))[StockInfo]

The result of a COLLAPSE() operator consists of head attributes (first parameter)
and set body attributes (second parameter). A succeeding aggregation step has to
be done explicitly by calling an EVAL() operator. The following expression com-
putes the total sum as well as the number of contributing messages based on the
attribute TradingVolumeGroup. Other attributes are not affected by this opera-
tion.
SumStockInfo EVAL(TradingVolumeSum:SUM(TradingVolumeGroup),

TradingVolumeCount:COUNT(TradingVolumeGroup),
TradingInfoGroup)[GroupedStockInfo]

Furthermore, in contrast to the following dynamic group generation, the static
groups are defined without regard to time or any other ordering characteristics.

• Generation of dynamic groups
The main idea of dynamic grouping is that entities (i.e. messages) are grouped by a
certain order and not by specific values. This implies that the definition of the WIN-
DOW() operator is only based on MSGSEQ structures. The group definition can be
performed either according to the number of messages or according to a time inter-
val. The following example illustrates the effect of the operator, by defining an open
window ranging from the first to the current entry and a sliding window covering all
entries within a symmetrical 90-minutes slot:

[WindowedStockInfo] WINDOW((StockName),
(TrVolOpenWindow:

MESSAGES(BEGIN:CURRENT, TradingVolume),
 TrVolClosedWindows:

TIMESTAMPS(-45.00:+45.00, TradingVolume)))
[StockInfo]

Analogously to the principle of static groups, dynamic groups have to be evalu-
ated using an additional EVAL() operator, e.g.:
[MvgSumStockInfo] EVAL(TrVolCumSum:SUM(TrVolOpenWindow),

TrVolMvgSum:SUM(TrVolClosedWindow))
 [WindowedStockInfo]

• Merge operator
A merge operator joins two data structures of potentially different type and forms a
new structure. Because this operator is crucial for the creation of more sophisticated
results, it is described explicitly below.

126 Wolfgang Lehner

• Switch operator
The special switch operator returns NULL as long as the control input (right input in
Fig. 10) representing the condition testing is FALSE. Otherwise, the switch operator
returns the messages from the data input. The SWITCH() operator is used to imple-
ment the test of various conditions.

Merging Two Message Data Structures
Within the PubScribe data model, a merge approach is applied relying on positions and
values. Content-based joins are possible whenever a MSGSET is involved. A positional
join is used to merge two MSGSEQ structures with multiple different join semantics.
The non-commutative MERGE() operator implies four combinations as outlined below:

• Join of messages in MSGSET structures
This case is comparable to a natural join in the relational model. More important,
however, is the distinction between symmetric and asymmetric joins. In the first
case, both messages exhibit the same set of header attributes. In the second case, one
partner holds a superset of header attributes. If H1 H2, H2 H1 with H1 H2
holds, then the join is not defined; otherwise:

SET(H1, B1 B2) SET1(H1, B1) SET2(H2, B2)
with the join condition:

(h2 h H1) h1 = h2

• Join of messages in MSGSEQ with messages of MSGSET structures
This cross-structural join reflects the most important join in notification systems; in-
coming messages are enriched with additional information coming from relational
sources using outer join semantics. If the set of header attributes in the MSGSET
structure H2 is not a subset of the header attributes of the MSGSEQ structure H1, the
join is not defined; otherwise:

SEQ(H1 {ValidTime}, B1 B2) SEQ(H1 {ValidTime},B1) SET(H2, B2)
with the join condition independent of the time stamp attribute:

(h2 h H1) h1 = h2

• Join of messages in MSGSET with messages of MSGSET structures
Joins between messages from sets enriched with messages from sequences are not
defined.

• Join of messages in MSGSEQ structures
In addition to a join between messages of MSGSET structures, a positional join with
H2 H1 is defined as follows:

SEQ(H1 {MAX(ValidTime1, ValidTime2)}, B1 B2)
SEQ(H1 {ValidTime1}, B1) SEQ(H2 {ValidTime2}, B2)

The new message has the same valid time as the younger join partner. The join
condition may be denoted as

(h2 h H1) h1 = h2 and (ValidTime1, ValidTime2).

Data Management Support for Notification Services 127

The -operator implies a huge variety of possible bindings. Fig. 8 shows multiple
situations to find a join partner for a specific message M. A pointwise join fea-
tures the following variations:
- nearest neighbor: candidate with the minimal distance to the message
 (M4 in Fig. 8)
- next recent: candidate with the minimal timely forward distance (M5)
- most recent: candidate with the highest time stamp values (M8)
Additionally, interval joins are defined within the PubScribe data model to com-
bine a single message with potentially multiple messages coming from the partner
sequence:
- all more recent: set of messages with a valid time equal to or younger than the
one of the reference message. In Fig. 8, message M would be combined with mes-
sages M5 to M8.
- all: a resulting message is produced for all members of the candidate sequence.
The following example shows a join between a MSGSEQ and a MSGSET; cur-
rent stock prices, etc. are complemented by comments and rankings coming from
a different source.
RankedStockInfo MERGE()[EVAL(Price, TradingVolume)[StockInfo],

 EVAL(Ranking)[StockRanking]]
The set of operators provides a solid base for a user to specify very complex de-

scriptions (see table in the appendix for an overview). The notification system has to
accept all feasible subscriptions and perform optimizations based on these structures.
The processing model is outlined in the following section.

Fig. 8 Different Semantics for SEQ-SEQ Joins

Time

(M, M4) mit T = T(M)

M8M7M6M5M4M3M2M1

M

t1 t2 t3 t4 t5 t6 t7 t8
t’

’nearest neighbor’:

’most recent’:

’next recent’:

’all more recent’:

’all ’:

(M, M8) mit T = T(M8)

(M, M5) mit T = T(M5)

(M, M5) mit T = T(M5)
(M, M6) mit T = T(M6)
(M, M7) mit T = T(M7)
(M, M8) mit T = T(M8)
(M, M1) mit T = T(M)
(M, M2) mit T = T(M)
(M, M3) mit T = T(M)
(M, M4) mit T = T(M)
(M, M5) mit T = T(M5)
(M, M6) mit T = T(M6)
(M, M7) mit T = T(M7)
(M, M8) mit T = T(M8)

128 Wolfgang Lehner

4 Subscription Processing Model

Using the set of operators and the structure, this section outlines the processing model
of the PubScribe notification system, subdivided into a structural and an operational
part.

4.1 Structural Layout and Processing Phases

The overall goal of the proposed PubScribe approach is to clearly decouple incoming
messages from the resulting notifications as much as possible, and thus, to enable the
notification system to optimize the processing of the subscriptions by operator cluster-
ing [27] and materialization [13]. As an underlying storage (!) model, PubScribe uses
the relational model [8] and maps each message to a single row in a table. The system
comprises multiple processing stages, each using different sets of tables as outlined be-
low (Fig. 9):

• Integration phase
Event messages are stored in message staging tables, where they are kept in their
original (received) form. In a preliminary step, single messages may be integrated
into base tables via join or split. Several options are possible: a message contributes
to exactly one single base table; a message needs a join partner to generate an entry
for a base table; or a message feeds two or more base tables, i.e. the content of a mes-
sage is split into multiple entries in the base tables.

base tables subscription generalized
staging tables subscription

propagate apply

N
ot

ifi
ca

tio
n

M
es

sa
ge

 D
el

iv
er

y
C

om
po

ne
nt

tablesmessage staging
tables

integrate

join

split

join

join join

Fig. 9 PubScribe Message Processing Model

E
ve

nt
 M

es
sa

ge
 P

ro
vi

de
r

Data Management Support for Notification Services 129

The generation of notification messages is subdivided into three phases, which are
introduced to share as much work as possible. For the coordination of this huge data
pipeline, the system additionally introduces two sets of temporary tables:

• Subscription staging tables
The purpose of staging tables is to keep track of all changes to the base tables, which
are not yet completely considered by all dependent subscriptions. It is worth to men-
tion here that a system may have multiple staging tables, and each staging table cov-
ers only these subscriptions which do only exhibit a lossless join. Lossy joins are de-
layed to the propagate or apply phase.

• Generalized subscription tables
A generalized subscription table serves as basis for the computations of the notifica-
tions for multiple subscriptions (i) referring to the same set of base tables (at least a
portion of them) and (ii) exhibiting similar delivery constraints. Each subscription
may either be directly answered from a generalized subscription table, or retrieved
from the generalized subscription table with either a join to another generalized sub-
scription table or a back-join to the original base table. It is worth to note here that it
must be ensured that the state of the base tables is the same as the state at the propa-
gation time of the currently considered message.
It is important to understand that subscription staging tables are organized from a

data perspective, whereas the set of generalized subscription tables is organized accord-
ing to delivery constraints, thus providing the borderline from incoming to outgoing da-
ta.

• Propagation phase
Comparable to the context of incremental maintenance of materialized views [13],
the PubScribe system exhibits a second phase of propagating the changes from base
tables to a temporary staging area. The resulting data is already aligned with the
schema of the outgoing message, i.e. the relational peers of message operators (joins,
selections, projections, and aggregation operations) have already been applied to the
delta information. We have to mention here that the propagation appears immediate-
ly after the update of the base table.

• Apply phase
The staging table holds accrued delta information from multiple updates. This se-
quence of delta information is collapsed, implying that the primary key condition is
satisfied again and the resulting data is applied to one or more generalized subscrip-
tion tables. In this phase, subscriptions exhibiting lossy joins are combined from en-
tries of multiple staging tables or a back-join to the base tables. The result of the ap-
ply phase is picked up by the notification message delivery component and propa-
gated to the subscriber.
Subdividing the process of subscription evaluation into multiple independent phas-

es implies that the system has a huge potential for optimization. The basic strategies and
the mapping to a relational query language are demonstrated below.

130 Wolfgang Lehner

4.2 Subscription Optimization and Relational Mapping

The optimization of subscription evaluation during the compilation is again subdivided
into two phases. The first phase of local restructurings aims at the generation of a better
execution plan using mechanisms restricted to the individual subscription. In this phase,
the basic idea of optimizing relational queries is transferred to the subscription data
model. A partially more important goal of this phase consists of generating a normal
form, which reflects the working platform for the following inter-subscription optimi-
zation process. Fig. 10 shows a subscription plan with the same sub-expression before
(left branch) and after (right branch) the local restructuring. The local operators FIL-
TER(), EVAL(), and SHIFT() are pushed down to the leaf nodes.

The global subscription restructuring phase (second phase) targets the identification
and exploitation of common sub-expressions by merging a newly registered subscrip-
tion into an existing subscription network (first ideas published as Rete network in
[11]). The merging process relies on the concept of building compensations. For exam-

((StockName, StockExchange),
Price200Win:MESSAGES(-200:CURRENT, Price))

(Price200Sum:SUM(Price200Win),
Price200Cnt:COUNT(Price200Win))

(Price200Avg:DIV(Price200Sum, Price200Cnt))

WINDOW

EVAL

EVAL

StockRankingStockInfo

(Ranking = ’*****’)

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

((StockName, StockExchange),
Price30Win:MESSAGES(-30:CURRENT, Price))

(Price30Sum:SUM(Price30Win),
Price30Cnt:COUNT(Price30Win))

(Price30Avg:DIV(Price30Sum, Price30Cnt))

MERGE

FILTER

EVAL

SHIFT

FILTER

WINDOW

EVAL

EVAL

MERGE

EVAL (Price30Avg, Price200Avg,
PriceFlag:SMALLER(Price30Avg, Price200Avg))

SHIFT (PriceFlag)

FILTER (PriceFlag = TRUE)

SWITCH

...

StockRanking

StockInfo

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

EVAL

SHIFT

FILTER

MERGE

FILTER (Ranking = ’*****’)

Fig. 10 Local Restructuring of PubScribe Subscriptions

Data Management Support for Notification Services 131

ple, if two expressions are of the same type and exhibit similar parameters, it might be
worthwhile to compute the most general form of the operator only once and add com-
pensation operators on top of the general form to produce the specific result for each
consuming operator. Fig. 11 illustrates the process of using the stacks of operators and
merging them step-by-step. As soon as a single pair matches at a specific level, the gen-
eral form of the new subsuming operator and the two compensation operators for the
individual subscription query are created. Additionally, the already generated compen-
sations (with the newly created compensation operator and the operaters still to be
matched on top of it) are now provided with data from the newly created subsuming op-
erator. Obviously, if the operator does not produce all messages required by the lowest
operator of the compensation, the whole matching procedure for that specific level fails.
The overall process starts bottom-up and continues as far as possible (ideally up to the
highest operator). The more similar the subscriptions are, the more operators can be
shared. To enable pairwise comparison, the general form of the subscription—produced
in the local restructuring phase—is extremely important.

The general process at a relational level is illustrated in [36, 20]. From the subscrip-
tion-specific standpoint, it is worth to consider each operator regarding the matchability
characteristic and the necessary compensations. Fig. 12 shows the most important op-
erators and their corresponding compensations. A FILTER() operator regarding a pred-
icate P1 can be replaced by another FILTER() operator with a weaker predicate P2 and
a compensation consisting again of a FILTER() operator with the original or a reduced
predicate to achieve the same result.

For a SHIFT() operator, the subsuming operator has to move only a subset of the
attributes required by the matching candidate, such that the compensation moves the at-
tributes still missing to the header of the message. The EVAL() operator can be easily
compensated, if the subsuming operator generates all attributes required for the com-
pensation, which introduces the scalar operations. In the case of a COLLAPSE() opera-
tor, a match is only successful, if the group-by attributes exhibit a subset relationship,
i.e. the subsuming operator generates data at a finer granularity; the final groups can
then be generated within the compensation. This first step is accomplished by a COL-
LAPSE() operator; the alignment of the grouping values requires an additional

already generated
subsuming
operators

already generated
compensations

<op>

<op>

already generated
subsuming
operators

already generated
compensations

<op-comp>

...

...
...

...

matching
candidate

current
operator

...

new
subsuming

new
compensation

matching
candidate

Fig. 11 Propagation of Multiple Operators

matching
candidate

pair

matching
candidate

further
further

...

further

further

...
<op>

operator(1)

operators
operators operators

operators

132 Wolfgang Lehner

EVAL::EXTRACT() operator to compensate for the additional nesting within the aggre-
gation attributes.

For dynamic grouping, there is no easy way of building compensations [20]. A
match is only successfully recorded, if the two parameter sets are equal, i.e. show the
same window size and window characteristics. For MERGE() operators, a compensa-
tion depends on the similarity of the join predicates and the join type, i.e. the type
(MSGSEQ or MSGSET) of the join partners. To weaken these restrictions, the join
characteristics in the case of a MSGSEQ/MSGSEQ join can be exploited using the fol-
lowing partial ordering of the join characteristics:

ALL (NEXT NEIGHBOR |
 ALL NEXT RECENT (MOST RECENT | NEXT RECENT))

For example, a join with NEXT RECENT can be derived from a MERGE() operator
with join characteristic ALL NEXT RECENT or simply ALL.

After restructuring the subscription query network both locally and globally, the fi-
nal step consists in generating SQL expressions allowing the efficient mapping of the
operator network onto operators of the relational storage model. Fig. 13 also shows this
step for the branch next to the StockInfo publisher. In a last and final step, the database
objects in a relational system are subject of pre-computation, if the corresponding op-
erator in the subscription network has a potentially high number of consumers.

Fig. 13 illustrates the optimization process of a subscription operator network using
our current example of stock trading information. It can be seen that the lowest two
blocks (blocks denote relational database objects of either virtual or materialized views)
of the operator network are the result of the matching process and reflect the set of sub-
suming candidates. The two parallel blocks denote compensations built on top of the
commonly used query graph.

➢

➢

(P1)

Fig. 12 Rules for Generating Compensations

(P2)

(P1) bzw. (P1 \ P2)...

a) compensation for FILTER()

(X, Y, Z) (X, Y)

(Z)...

b) compensation for SHIFT()

(A:op(X),
(A:op(X), X, Y)

(A, B:op(X,Y))...

c) compensation for EVAL()

B:op(X,Y))
((X, Y),

...

d) compensation for COLLAPSE()

(AGrp:A)) ((X, Y, Z),
(AGrp:A, BGrp:B))

((X, Y),
(ATmp:AGrp))

(AGrp:
EXTRACT(A, ATmp))

EVAL EVAL

EVAL

COLLAPSE COLLAPSE

COLLAPSE

EVAL

FILTER FILTER

FILTER

SHIFT SHIFT

SHIFT

Data Management Support for Notification Services 133

5 Summary and Conclusion

Notification systems reflect a special kind of data management systems working like a
huge data pipeline. Data items (documents) are entering the system, posted in form of
event messages. Within the system, standing queries (subscriptions) are forming a com-
plex-structured network of specific operators. Messages are routed through the operator
network in multiple phases and finally arrive as notification messages at the delivery
component responsible for sending out the messages in any supported format using a
huge variety of protocols. In order to make these data pipelines work very efficiently
and support a huge number of standing queries with similar structure, advanced data-
base technology has to be adopted and exploited to a large extent. From a more global
perspective with a database management system as an information provider, it is safe to

((StockName, StockExchange),
Price200Win:MESSAGES(-200:CURRENT, Price))

(Price200Sum:SUM(Price200Win),
Price200Cnt:COUNT(Price200Win))

(Price200Avg:DIV(Price200Sum, Price200Cnt))

WINDOW

EVAL

EVAL

((StockName, StockExchange),
Price30Win:MESSAGES(-30:CURRENT, Price))

(Price30Sum:SUM(Price30Win),
Price30Cnt:COUNT(Price30Win))

(Price30Avg:DIV(Price30Sum, Price30Cnt))

WINDOW

EVAL

EVAL

MERGE

EVAL (Price30Avg, Price200Avg,
PriceFlag:SMALLER(Price30Avg, Price200Avg))

SHIFT (PriceFlag)

FILTER (PriceFlag = TRUE)

SWITCH

...

StockRanking

StockInfo

(Price, MsgTime:TIME(ValidTime))

(MsgTime=’19:30’)

(MsgTime)

EVAL

SHIFT

FILTER

MERGE

FILTER (Ranking = ’*****’)

operator blocks for the
relational storage system

CREATE [MATERIALIZED] VIEW V1 AS
 SELECT StockName, StockExchange,
 Price,
 TIME(ValidTime) AS MsgTime,
 FROM StockInfo
 WHERE TIME(MsgTime) = ’19:30:00’

Fig. 13 Generating Subscription Execution Networks

134 Wolfgang Lehner

say that notification systems help the user to efficiently filter the vast amount of avail-
able information to focus only on relevant pieces of information.

References

[1] Adiba, M., Lindsay, B.: Database Snapshots. In: Proceedings of the VLDB Conference,
1980, pp. 86-91

[2] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom,
J.: STREAM: The Stanford Stream Data Manager. In: Proceedings of the SIGMOD Con-
ference, 2003, p. 665

[3] Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: Pro-
ceedings of the SIGMOD Conference, 2000, pp. 261-272

[4] Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous
queries over streams. In: Proceedings of the SIGMOD Conference 2002, pp. 49-60

[5] Birman, K.P. : The Process Group Approach to Reliable Distributed Computing. In: Com-
munications of the ACM, 36(12), 1993, pp. 36-53

[6] Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Proceedings
of the Mobile Data Management Conference, 2001, pp. 3-14

[7] Carney, D, Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Management Ap-
plications. In: Proceedings of VLDB Conference, 2002, pp. 215-226

[8] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. In: Communications
of the ACM, 13(6), 1970, pp. 377-387

[9] Cortes, C., Fisher, K., Pregibon, D., Rogers, A., Smith, F.: Hancock: A Language for Ex-
tracting Signatures from Data Streams. In: Proceedings of the Knowledge Discovery and
Data Mining Conference, 2000, pp. 9-17

[10] Foltz, P.W., Dumais, S.T.: Personalized Information Delivery: An Analysis of Information
Filtering Methods. In: Communications of the ACM, 35(1992)12, pp. 51-60

[11] Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. In: Artifical Intelligence, 19(1982)1, pp. 17-37

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1997

[13] Gupta, A., Mumick, I.: Materialized Views: Techniques, Implementations and Applica-
tions. MIT Press, 1999

[14] Hellerstein, J.M., Franklin, M.J, Chandrasekaran, S., Deshpande, A., Hildrum, K., Mad-
den, S., Raman, B., Shah, M.A.: Adaptive Query Processing: Technology in Evolution. In:
IEEE Data Engineering Bulletin 23(2), 2000, pp.7-18

[15] Koudas, K., Srivastava, D.: Data Stream Query Processing: A Tutorial. In: Proceedings of
VLDB Conference, 2003, p. 1149

[16] Lehner, W.: Datenbanktechnologie für Data-Warehouse-Systeme (in German).
dpunkt.verlag, 2003

[17] Lehner, W., Schöning, H.: XQuery: Grundlagen und fortgeschrittene Methoden (in Ger-
man). dpunkt.verlag, 2004

Data Management Support for Notification Services 135

[18] Lehner, W.: Marktplatz omnipräsenter Informationen - Aufbau und Analyse von Subskrip-
tionssystemen (in German). B.G. Teubner Verlag, 2002

[19] Lehner, W. (Hrsg.): Advanced Techniques in Personalized Information Delivery. Techni-
cal Report, University of Erlangen-Nuremberg, 34(5), 2001

[20] Lehner, W., Pirahesh, H., Cochrane, R., Zaharioudakis, M.: fAST Refresh using Mass
Query Optimization. In: Proceedings of the ICDE Conference, 2001, pp. 391-398

[21] McCarthy, D.R., Dayal, U.: The Architecture Of An Active Data Base Management Sys-
tem. In: Proceedings of the SIGMOD Conference, 1989, pp. 215-224

[22] Oki, B.M., Pflügl, M., Siegel, A., Skeen, D.: The Information Bus - An Architecture for
Extensible Distributed Systems. In: Proceedings of the SOSP Conference,1993, pp. 58-68

[23] Powell, D.: Group Communication (Introduction to the Special Section). In: Communica-
tions of the ACM 39(4), 1996, pp. 50-53

[24] Pu, Y., Liu, L.: Update Monitoring: The CQ Project. In: Proceedings of the International
Conference on Worldwide Computing and Its Applications, 1998, pp. 396-411

[25] Ramakrishnan, S., Dayal, V.: The PointCast Network. In: Proceedings of the SIGMOD
Conference, 1998, pp. 520

[26] Roth, M.T., Schwarz, P.M.: Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy
Data Sources. In: Proceedings of the VLDB Conference, 1997, pp. 266-275

[27] Sellis, T.: Multiple Query Optimization. In: ACM Transactions on Database Systems,
13(1), 1988, pp. 23-52

[28] Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence Query Processing. In: Proceedings
of the SIGMOD Conference, 1994, pp. 430-441

[29] Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traf-
fic. In: Proceedings of the USENIX Annual Technical Conference, 1998

[30] Terry, D.B., Goldberg, D., Nichols, D., Oki, B.M.: Continuous Queries over Append-Only
Databases. In: Proceedings of the SIGMOD Conference, 1992, pp. 321-330

[31] Tian, F., Reinwald, B., Pirahesh, H., Mayr, T., Myllymaki, J: Implementing a Scalable
XML Publish/Subscribe System Using a Relational Database System. In: Proceedings of
the SIGMOD Conference, 2004, pp. 479-490

[32] World Wide Web Consortium: Extensible Markup Language (XML), Version 1.0, Second
Edition. W3C Recommendation.
Electronically available at: http://www.w3.org/TR/2000/REC-xml-
20001006

[33] World Wide Web Consortium: XML Schema Part 1: Structures.
Electronically available at: http://www.w3.org/TR/xmlschema-1/

[34] World Wide Web Consortium: XML Schema Part 2: Datatypes.
Electronically available at: http://www.w3.org/TR/xmlschema-2/

[35] Yan, T.W., Garcia-Molina, H.: SIFT - a Tool for Wide-Area Information Dissemination.
In: Proceedings of the USENIX Winter Conference, 1995, pp. 177-186

[36] Zaharioudakis, M., Cochrane, R., Pirahesh, H., Lapis, G., Urata, M.: Answering Complex
SQL Queries Using Summary Tables. In: Proceedings of the SIGMOD Conference, 2000,
pp. 105-116

136 Wolfgang Lehner

Appendix

Tab. 1 Listing of all PubScribe Operators

Description Operator Specification

filtering X’ FILTER(<attr> [= , ~=, <, >] <val>,
 <attr> IN (<val1>, ..., <valn>), ...)[X]

attribute migration X’ SHIFT(<attr>, ...)[X]

attibute operator
 - scalar operator
 - aggregations
 operator
 - structural
 modification
 operator

X’ EVAL(<attr>,
 <attr’>:<scalar-op>(<attr1>[,<attr2>]),
 <attr’>:<aggr-op>(<attr>)
 <attr’>:<attr-op>(<attr1>, <attr2>), ...)[X]
 <scalar-op> { PLUS, MINUS, MULT, DIV }
 <scalar-o1opd> { GREATER, SMALLER, EQUAL }
 <scaler-op> { DATE, YEAR, MONTH, DAY }
 <scaler-op> { TIME, HOUR, MIN }
 <aggr-op> { MIN, MAX, SUM, COUNT }
 <attr-op> { EXTRACT, COMBINE }

static
group by

X’ COLLAPSE((<attr1>, ..., <attrn>)
 (<attrGrp1>:<attr1>), ...,
 (<attrGrpm>:<attrm>))[X]

dynamic
group by

X’ WINDOW((<attr1>, ..., <attrn>),
 (<attrWin1>:<win-spec>(<start>:<stop>, <attr1>), ...,
 <attrWinm>:<win-spec>(<start>:<stop>, <attrm>))[X]
 <win-spec> { MESSAGES, TIMESTAMPS }
 <start> { BEGIN, CURRENT, <int-val>, <time-val>}
 <stop> { END, CURRENT, <int-val>, <time-val>}

join X’ MERGE(<join-spec>)[X1, X2]
 <join-spec> { NEXT NEIGHBOR, MOST RECENT,
 NEXT RECENT, ALL RECENT, ALL }

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 137-157, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Search Support in

Data Management Systems

Andreas Henrich

Otto-Friedrich-Universität Bamberg, Germany
andreas.henrich@wiai.uni-bamberg.de

Abstract. In consequence of the change in the nature of data management
systems the requirements for search support have shifted. In the early days of
data management systems, efficient access techniques and optimization strat-
egies for exact match queries had been the main focus. Most of the problems
in this field are satisfactorily solved today and new types of applications for
data management systems have turned the focus of current research to con-
tent-based similarity queries and queries on distributed databases. The
present contribution addresses these two aspects. In the first part, algorithms
and data structures supporting similarity queries are presented together with
considerations about their integration in data management systems, whereas
search techniques for distributed data management systems and especially
for peer-to-peer networks are discussed in the second part. Here, techniques
for exact match queries and for similarity queries are addressed.

1 Motivation

For decades one main focus of data management systems had been the efficient process-
ing of fact queries. A typical—yet rather simple—example would be the search for all
open invoices for a customer with a given reference number. Current database manage-
ment systems are optimized to process large numbers of such queries on dynamic data
sets and most problems related to queries of that type are already solved more or less
satisfactorily (see [12], for example).

On the other hand, the growing amount of digital documents and digital multimedia
documents shifts the requirements for data management systems. In situations where
text documents or multimedia documents have to be maintained, a strong requirement
for content-based queries is induced. Here a typical query is given by an example doc-
ument or a query text describing the requested documents. Given a set of images, a que-
ry can for example be defined by an example image and in this case query processing
is concerned with finding similar images. Content-based retrieval has been considered
for a long time in the area of information retrieval (see, e.g., [1]). However, information
retrieval (IR) has mainly addressed flat text documents in the past. Today, structured

138 Andreas Henrich

documents (for example, XML documents) and also structured multimedia documents
have to be maintained. Many commercial database management systems claim to be the
most suitable systems to manage XML data and multimedia data. As a consequence, so-
phisticated content-based retrieval facilities will be an important distinguishing feature
of data management systems.

Another important aspect in data management systems is the decentralized charac-
ter of cutting edge data management systems. One important trend in this respect are
peer-to-peer networks (P2P networks) which are made up of autonomous peers contrib-
uting to an administration-free overlay network. The efficient processing of similarity
queries in these networks is an important field of research and not yet satisfactorily
solved.

In the rest of this contribution, we will first discuss techniques and algorithms for
the efficient processing of complex similarity queries in a local scenario. Thereafter, we
will discuss approaches towards an efficient processing of content-based similarity que-
ries in P2P networks.

2 Processing Complex Similarity Queries

In recent years, structured multimedia data has become one of the most challenging ap-
plication areas for data management systems, and search support for structured multi-
media data is an important research topic in this respect. To emphasize the key problems
in this field, let us assume tree-structured multimedia documents, in which the internal
nodes represent intermediate components, such as chapters or sections, and where the
leaves represent single media objects such as text, image, video, or audio. In order to
support the search for such documents—or document fragments—we need search serv-
ices which address the following requirements [15]:

• Dealing with Structured Documents: The fact that documents are complex-struc-
tured objects in our scenario, brings up various interesting research issues.
First, the search support component of a data management system must allow to
search for arbitrary granules ranging from whole documents over intermediate
chunks to single media objects. Second, with structured documents many properties
of an object are not directly attached to the object itself, but to its components. For
example, the text of a chapter will usually be stored in separate text objects associat-
ed with the chapter object via links or relationships. Third, additional information
about an atomic media object can be found in its vicinity. Exploiting the structure of
a multimedia document, this concept of vicinity can be addressed navigating one link
up and then down to the sibling components.

• Feature Extraction and Segmentation: With multimedia data the semantics is usual-
ly given implicitly in the media objects. For example, an image might represent a cer-
tain mood. Therefore, a search support component should allow to extract features
from the media objects potentially describing their semantics. Furthermore, it should

Search Support in Data Management Systems 139

provide means to subdivide media objects such as images or videos into semantically
coherent segments.

• Similarity Queries: Because of the vagueness in the interpretation of the media ob-
jects and in the formulation of the user’s information need, similarity queries should
be facilitated. The search support component should provide the definition of rank-
ing criteria for media objects. For example, text objects can be ranked according to
their content similarity compared to a given query text. To this end, the well-known
vector space model can be applied, for example [1]. Images can be ranked with re-
spect to their color or texture similarity compared to a sample image [34].

• Combination of Several Similarity Queries: Images are an example of a media type,
for which no single comprehensive similarity criterion exists. Instead, different cri-
teria are applicable addressing, e.g., color, texture, and shape similarity. Hence, al-
gorithms to combine multiple ranking criteria and to derive an overall ranking are
needed. To calculate such a combined ranking algorithms such as Nosferatu, Quick-
Combine, or J* have been proposed (cf. section 2.3).

• Derivation of a Ranking from a Ranking for Related Objects: With structured docu-
ments, ranking criteria are often not defined for the required objects themselves, but
for their components or other related objects. An example arises when searching for
images where the text in the “vicinity” (e.g. in the same subsection) has to be similar
to a given sample text. In such situations, the ranking defined for the related objects
has to be transferred to the required result objects. However, neither the semantics
nor the implementation of such a “transfer” is self-evident (cf. section 2.4), because
there will usually be a 1:n-relationship or even a n:m-relationship between the ob-
jects.

2.1 Components Contributing to Similarity Queries

The main components contributing to the processing of a similarity query can be clari-
fied by an example. Assume a query searching for video shots dealing with hydrogen-
powered cars and presenting the cars in a nice sunset scenario. Furthermore, assume that
this query has to be processed on a database containing complete videos. Fig. 1 depicts
the class diagram underlying our example. This diagram reflects the need to break the
videos into shots by means of a shot detection algorithm which in fact is a media-type-

Fig. 1 Small Class Diagram for our Example Query

140 Andreas Henrich

specific segmentation algorithm. Furthermore, each shot consists of single images, and
caption texts are attached to the video shot objects. These caption texts might be created
manually or automatically using a speech recognition algorithm. Of course, the seg-
mentation of a video into shots and images as well as the speech recognition could be
done at query time; however, it is more reasonable to perform these steps when a video
is inserted into the system or by some type of batch process.
When we consider our example query in a little more depth, we note that there are two
criteria for a video shot to become a good result of our query:

1. The shot should deal with “hydrogen-powered cars”. This criterion can be defined
based on the caption text objects associated with the video shot objects and proc-
essed using techniques from the field of information retrieval.

2. The shot should present the cars in a “nice sunset scenario”. This condition can
be tested based on the images constituting the video shots. A video shot contain-
ing images similar to an example image representing a sunset might be considered
a good result.

It is important to note that both criteria can be interpreted as similarity conditions. With
the first criterion, caption texts similar to the query text “hydrogen-powered cars” are
required. With the second criterion, images similar to an example image are required.
Furthermore, it is important to note that both conditions are not defined for the desired
video shot objects directly, but for associated objects.

In the following, we will explain how our example query can be evaluated and
which components contribute to the query processing (cf. Fig. 2).

Fig. 2 Steps to Process our Example Query

Search Support in Data Management Systems 141

We assume that the segmentation of the videos into shots and images as well as the
caption extraction have been performed before query time. Then the query processing
consists of the six steps also depicted in Fig. 2:

1. Query processing starts with the “nice sunset scenario” criterion. We assume that
access structures for color features and texture features are maintained for the im-
age objects. These access structures (addressed in more detail in section 2.2) both
derive a ranking of the image objects according to their similarity to an example
image showing a sunset scenario.

2. The first step has yielded two rankings of image objects. Now these two rankings
have to be combined into one ranking. In the literature, various algorithms for this
purpose have been proposed (cf. section 2.3). The result of this step is a combined
ranking of the image objects.

3. Unfortunately, we are not interested in a ranking of image objects, but in a rank-
ing of video shot objects. Therefore, we have to derive a ranking for the related
video shot objects from the ranking of the image objects calculated in step 2. To
this end, we can exploit that the image objects in the ranking are usually associ-
ated with so-called retrieval status values. As a consequence, we can derive a
ranking for the video shots associating each video shot with the maximum (or av-
erage) retrieval status value of an associated image (cf. section 2.4).

4. Now the second criterion saying that the video shot has to deal with “hydrogen-
powered cars” has to be addressed. We start performing a similarity query based
on the query text “hydrogen-powered cars” on the caption texts. The usual access
structures supporting such text similarity queries are inverted files (cf. section
2.2). This yields a ranking of the caption text objects.

5. Since we are not interested in a ranking of the caption text objects but in a ranking
of the video shot objects, we have to transfer this ranking analogously to step 3.

6. Now we have got two rankings for the video shot objects stemming from the “nice
sunset scenario” criterion and from the “hydrogen-powered cars” criterion. These
two rankings have to be combined into one ranking analogously to step 2.

An important aspect of the process described above is that query processing can be
performed in a stream-oriented lazy evaluation approach (client-pull concept). This
means that the component computing the final result restricts itself to a small result size
in the beginning (maybe the querier is interested in the ten best matches only, with the
option for further extensions). Then this component (corresponding to step 6 in Fig. 2)
will demand only the minimum amount of input elements from both its input compo-
nents (corresponding to steps 3 and 5 in Fig. 2) required to calculate the first ten result
elements.

In the following we will discuss the single components contributing to the process
in more depth. Furthermore, we will discuss query optimization issues in the given con-
text in section 2.5.

142 Andreas Henrich

2.2 Access Structures for Similarity Queries

Access structures for similarity queries determine a ranking of objects for a set of ob-
jects (usually containing all objects of a given type or class), a given query object, and
a given similarity measure. Three main categories of access structures can be distin-
guished: inverted files, trees, and fast sequential scan techniques.

Inverted Files. Inverted files are the most important access structure in information
retrieval. Here queries and documents are represented by sparse high dimensional vec-
tors. The dimensionality t of the vectors is given by the number of words occurring in
the documents and the vector (wd1,wd2,...,wdt) describing a document d has non-zero en-
tries only for the components corresponding to words occurring in d. Furthermore, the
vector (wq1,wq2,...,wqt) representing a query q has non-zero components only for the
components corresponding to words occurring in q. In the literature, many approaches
have been presented to calculate the concrete values for the non-zero components [1].
Here it is sufficient to know that the components are usually between zero and one.

In this situation, an inverted file stores a list for each component k {1,...,t}(i.e., for
each dimension of the t-dimensional space). And the list for component k contains ele-
ments for all documents d with wdk > 0. Because the similarity between a query q and
a document d is often defined by the scalar product

,
we have to access only the lists for components with wqk > 0 when processing a query
q. The other dimensions cannot contribute anything to the similarity values.

Inverted files are an extremely efficient access structure in situations where two
conditions are met: First, the vectors representing the documents should be sparse in or-
der to avoid a huge amount of long lists. Second, the query should contain only few non-
zero components, because in such situations only very few of the t lists have to be ac-
cessed in order to process the query. If these conditions are not met, inverted files tend
to be rather inefficient.

In the literature, various optimization techniques for the implementation of inverted
files have been presented (see [4]). Moreover, the use of inverted files has also been
suggested in a modified variant for image retrieval [23].

Trees. In the area of spatial data management, many tree-based access structures have
been developed starting around 1980. Later on, algorithms for nearest-neighbor queries
have been proposed for these structures [13, 19, 31]. When these algorithms were adapt-
ed to high-dimensional feature vectors, it turned out that they can yield a sub-linear per-
formance only for dimensions up to about 10.

Fig. 3 depicts a simple tree-based access structure on the left side. The structure is
a k-d-tree also used as the basis behind the LSDh-tree [14] or the hB-tree [22]. The 2-
dimensional data space [0.0; 1.0] [0.0; 1.0] is partitioned by the root of the tree in di-
mension 1 at position 0.5. In the left subtree an additional split is made in dimension 2
at position 0.4. The right subtree contains further splits in an analogous way. The cor-
responding data space partitioning is presented at the right side of Fig. 3. The crosses

wqk wdkk 1=

t

Search Support in Data Management Systems 143

represent objects maintained in the access structure. For example, there is an object
(0.08;0.3) stored in bucket 1.

If we assume a similarity query with the query vector (0.55; 0.1), represented by a
star in Fig. 3, we start processing at the root of the directory and search for the bucket
for which the bucket region (i.e., the part of the data space associated with the bucket)
contains q. Every time during this search when we follow the left son, we insert the right
son into an auxiliary data structure NPQ (= node priority queue), where the element
with the smallest distance between q and its data region (i.e., the part of the data space
associated with the subtree) has highest priority; and every time we follow the right son,
we insert the left son into NPQ.

 Then the objects in the bucket found (bucket 3 in our example) are inserted into
another auxiliary data structure OPQ (= object priority queue), where the object with
the smallest distance to q has highest priority. Thereafter the objects with a distance to
q less than or equal to the minimal distance between q and the data region of the first
element in NPQ are taken from OPQ. Unfortunately, there are no objects with such a
small distance in OPQ in our example, because the bucket region of bucket 1 is closer
to q.

Now the directory node or bucket with highest priority is taken from NPQ. In our
example, this means that we have to follow the path marked with “2.” in the tree at the
left side of Fig. 3. Bucket 1 determined in this way is processed inserting the objects
into OPQ and extracting the objects with a distance to q less than or equal to the mini-
mal distance between q and the first element in NPQ from OPQ. This way we extract
the closest object (0.42; 0.07). If further objects are needed in the ranking, we have to
continue the process. In our example we would now follow path “3.” in the tree.

The sketched algorithm is rather efficient for spatial applications with 2- or 3-di-
mensional data and it can also outperform sequential scan techniques for dimensions up
to about ten dimensions. However, the curse of dimensionality makes it impossible for

Fig. 3 Example of a Similarity Query on a Tree Structure

144 Andreas Henrich

tree-based access structures to obtain better than linear complexity for similarity queries
in spaces with dimensionality t > 10 [38].

Fast Sequential Scan Techniques . The curse of dimensionality mentioned above
opened the floor for fast sequential scan techniques. As a consequence, the basic idea
of the VA-file [38] (VA for vector approximation) is to accept linear complexity, but to
minimize the overhead in order to be faster than tree-based structures. A VA-file stores
each feature vector twice. Once in full precision —i.e., with a 32-bit floating point value
per component— and once as a rough approximation with about 6 bits per vector com-
ponent. Of course, the approximations do not suffice to calculate the exact result of a k-
NN query (searching for the k next neighbors or best matches), but a fast linear scan
over the approximations can be used to compute a small set of candidates surely includ-
ing the k most similar objects, where k can be chosen arbitrarily. Only for the elements
in the candidate set the exact feature vectors have to be accessed in order to calculate
the k most similar objects exactly. Fig. 4 summarizes the phases of such a k-NN query.

In the literature, a variety of variants of the VA-file can be found: Balko and
Schmidt [3] improve on the VA-file using a different data representation for the approx-
imations and the A-tree proposed by Sakurai et al. [32] improves approximation and
query efficiency by creating a tree of approximations. In [26], parallel processing of
phase 1 is proposed and, in [25], the IVA-file is proposed as a variant optimized for a
specific similarity measure.

None of the three presented types of access structures is superior in all situations.
Inverted files are well suited for sparse feature vectors, tree-based structures provide a
sublinear performance for low-dimensional feature spaces, and fast sequential scan
techniques are well suited for high-dimensional spaces.

Fig. 4 Similarity Query Searching for the k best Matches on a VA-File

Search Support in Data Management Systems 145

2.3 The Data Fusion Problem

In various situations, multiple rankings exist for a set of objects based on different rank-
ing criteria. An example arises when a set of images has to be ranked with respect to the
similarity to a given sample image. Here, different similarity criteria addressing color,
texture, and also shape are applicable. Hence, components which merge multiple
streams representing different rankings over the same base set of objects into a com-
bined ranking are needed.

Because each element of each input stream is associated with some type of similar-
ity value or retrieval status value (RSV), a weighted average over the retrieval status
values in the input streams can be used to derive the overall ranking [10]. Other ap-
proaches are based on the ranks of the objects with respect to the single criteria—i.e.,
the position in the stream [15]. To calculate such a combined ranking, efficient algo-
rithms, such as Fagin’s algorithm, Nosferatu, Quick-Combine, or J* have been pro-
posed [9, 29, 11, 27].

The basic idea of the Nosferatu algorithm is to access the input streams in parallel.
Let i,q be the relative importance of input ranking i (i {1,2} in the case of two input
rankings) for query q. Furthermore, let mi be an upper bound for the RSVi,d values of
the elements not yet read from input ranking i. This upper bound can be initialized to
some theoretical maximum value at the beginning, and during the algorithm it corre-
sponds to the RSVi,d of the last element read from stream i. The algorithm maintains an
auxiliary data structure in which the already calculated part of

RSVres,d =
is maintained for each “document” d for which an entry has been read from at least one
input stream. If k elements are requested in the result, the algorithm stops as soon as un-
read entries from the input rankings can no longer affect the top k elements of the output
ranking.

In contrast to the Nosferatu algorithm which uses only sequential accesses on the
input rankings, the Threshold Algorithm (TA) presented by Fagin is based on sequential
and random accesses. This means that as soon as an entry for a document or object d is
read from one input stream i, the missing RSVj,d values are determined via random ac-
cesses. This means that the algorithm starts with parallel sequential reads from all input
rankings. Then the missing RSVj,d values are determined via random accesses. If doc-
uments, not yet considered on at least one input stream, can still become part of the top
k elements in the result, a further step is performed. Otherwise the process is stopped.
Note that

RSVres,d
can be used to calculate the potential retrieval status values of documents not yet con-
sidered.

The Quick-Combine algorithm is similar to the Threshold Algorithm. However, it
reads only from one list at a time and selects the list for the next sequential read depend-
ing on the weights i and the current descent in the values of the input rankings. This
causes some additional effort for the calculations and potentially fewer accesses on the

i q RSVi di

i q mi di

146 Andreas Henrich

input rankings if the assumptions concerning the characteristics of the RSV-values are
correct.

Experimental results [17] show that under typical assumptions Quick-Combine will
be about 10 to 20% faster than the Threshold Algorithm. Nosferatu performs much
worse as long as all i values are approximately equal. However, for diverse i values
Nosferatu can outperform the other algorithms.

2.4 Derived Rankings

As mentioned in the motivation, with structured documents ranking criteria are some-
times not defined for the required objects themselves but for their components or other
related objects. An example arises when searching for images where the text nearby (for
example in the same section) should be similar to a given sample text. The problem can
be described as follows: We are concerned with a query which requires a ranking for
objects of some desired object type otd (image for example). However, the ranking is
not defined for the objects of type otd, but for related objects of type otr (text for exam-
ple).

We assume that the relationship between these objects is well-defined and can be
traversed in both directions. In object-relational databases, join indexes and index struc-
tures for nested tables are used to speed up the traversal of such relationships. For a fur-
ther improvement additional path index structures can be maintained on top of the OR-
DBMS. Furthermore, we assume there is an input stream yielding a ranking for the ob-
jects of type otr. For example, this stream can be the output of an access structure
supporting similarity queries or a combine algorithm as described in the previous sec-
tion.

To perform the actual transfer of the ranking, we make use of the fact that each ob-
ject of type otr is associated with some type of retrieval status value (RSVr) determining
the ranking of these objects. As a consequence, we can transfer the ranking to the ob-
jects of type otd based on these retrieval status values. For example, we can associate
the maximum retrieval status value of a related object of type otr with each object of
type otd. Another possibility would be to use the average retrieval status value over all
associated objects of type otr. The retrieval status value calculated for an object of type
otd according to the chosen semantics will be called RSVd in the following.

Based on these assumptions, the “transfer algorithm” [16] can proceed as follows:
It uses the stream with the ranked objects of type otr as input. For the elements from this
stream, the concerned object—or objects—of type otd are computed traversing the re-
spective relationships. Then the RSVd values are calculated for these objects of type otd
according to the chosen semantics and the object of type otd under consideration is in-
serted into an auxiliary data structure maintaining the objects considered so far. In this
data structure, each object is annotated with its RSVd value. Now the next object of type
otr from the input stream is considered. If the RSVr value of this new object is smaller
than the RSVd value of the first element in the auxiliary data structure which has not yet
been delivered in the output stream, this first element in the auxiliary data structure can
be delivered in the output stream of the transfer component.

Search Support in Data Management Systems 147

Analytical and experimental considerations show that the performance of the trans-
fer of a ranking is heavily influenced by the selected semantics [17]. The maximum se-
mantics yields a better performance than the average semantics. Furthermore, it has to
be mentioned that for example the J* algorithm [27] allows for the integration of a
transfer step into the combine algorithm.

2.5 Query Optimization for Similarity Queries

Now that we have sketched some algorithms contributing to the processing of complex
similarity queries, it remains to be described how these algorithms can be integrated
into the query execution processes of relational databases (see [12], for example).

There are some obvious problems in this respect: First, whether an element belongs
to the result of a query or not, cannot be decided based only on the object itself and the
query. We have to consider the whole set of objects to find out if there are objects more
similar to the query. Second, we are no longer dealing with sets or bags, but with rank-
ings or lists. As a consequence, some standard rules for query optimization are no long-
er applicable when concerned with similarity or ranking queries.

One important research direction in this respect considers the optimization of so-
called top N queries. For example, Carey and Kossmann [5] explore execution plans for
queries defining a ranking criterion in the ORDER BY-clause and a limitation of the re-
sult size in a STOP AFTER-clause. As another example, Chaudhuri and Gravano [6]
study the advantages and limitations of processing a top N query by translating it into a
single range query that traditional relational DBMSs can process efficiently. In both
cases, optimistic and pessimistic variants exist. In the case of the optimistic variants,
small intermediate results during query processing are achieved with a risk of ending
up with fewer than the desired k best matches. In these cases, a restart of the query
processing with larger intermediate results is needed. In short, the range condition used
to filter out bad matches has to be relaxed in this case, whereas the pessimistic variants
avoid restarts at the price of larger intermediate results.

Another approach presented by Herstel, Schulz, and Schmitt aims for a specific
similarity algebra [18, 33]. For this algebra, the applicability of the optimization rules
known from classical relational algebra is considered. It turns out that, e.g., weighted
combinations of similarity criteria cause problems with respect to associativity and dis-
tributivity.

At present, most approaches towards algorithms or systems for complex similarity
queries have to be considered as interesting building blocks for specific applications. A
general framework with a maturity similar to the frameworks and architectures for
processing classical set-oriented relational queries is still an open issue.

148 Andreas Henrich

3 Processing Similarity Queries in P2P Networks

In section 2, we have described concepts and algorithms for the processing of complex
similarity queries in a centralized scenario. We have not considered issues concerning
the distribution of the data. However, distributed data management systems and espe-
cially the management of data in P2P networks is an important new field of research
and data management in grid infrastructures is strongly related. Therefore, we will ad-
dress concepts and algorithms for similarity queries in P2P networks in this section. We
omitted the adjective complex here, because currently even the processing of “simple”
similarity queries is not really solved for P2P networks.

Roughly spoken, a P2P network is an overlay network where each peer knows its
neighbors, which usually form only a small fraction of the P2P network. If a peer wants
to distribute a message—maybe a query—in the network, the peer sends the message to
its neighbors which, in turn, forward the message to their neighbors and so forth.

To maintain a P2P network three types of administrative operations are needed: (1)
Initial Introduction: This operation has to be performed when a peer enters the network
for the first time. In this case, the peer has to announce itself to the network. (2) Leave:
When a peer wants to leave the network temporarily there might be a need to do some
local reorganization in the network in order to transfer the tasks of the peer to some of
its neighbors. (3) Join: This operation is used when a peer is entering the network again
after a previous leave operation. Then the peer can take over its responsibilities again.

When a peer is in operation, it can perform its intrinsic tasks. For example, it can
search for data or information out there in the P2P network. In the following sections,
we will mainly concentrate on this operation and discuss Initial Introduction, Leave,
and Join only as far as necessary to understand the search operation.

3.1 Looking Up Documents by Their Identifiers

Early P2P systems mainly performed search operations based on identifiers rather than
content-based similarity queries. A usual query was to look up an item defined by a
unique key in the P2P network.

For example, Freenet [7]—whose goal is efficient, anonymity-preserving publica-
tion—uses an innovative symmetric lookup strategy for query processing. Within each
node a routing table is maintained, which contains a list of neighboring peers along with
information about which data they furnished in the past. Queries are forwarded from
node to node until the desired object is found by a gradient ascent search algorithm with
backtracking. In doing so, the goal of anonymity creates some challenges. To provide
anonymity, Freenet avoids associating a document with any predictable server or form-
ing a predictable topology among servers. The search is based on unstructured routing
tables dynamically built up using caching. As a consequence, unpopular documents
may simply disappear from the system, because no server has the responsibility for
maintaining replicas. Another consequence is that a search may often need to visit a
large fraction of the Freenet network. Freenet is not able to find out in a guaranteed

Search Support in Data Management Systems 149

number of hops, if a given item is present in the P2P network or not. This problem is
overcome by distributed hash tables (DHTs) while sacrificing anonymity. In the follow-
ing, we will consider Chord and CAN as two implementations of a DHT.

Chord — ADHT Organized Like a Skiplist . Chord [36] is an example of a sys-
tem implementing a DHT (see [2] for an overview with references to various other DHT
approaches). With Chord each peer is mapped to a unique ID—usually a 160 bit
number. The peers are arranged in a logical ring. Such a ring is given for an ID-length
of 7 bit (i.e., IDs from 0 to 127) in Fig. 5. The peers are indicated by small dark grey
circles on the ring. On the other hand, objects to be maintained in the P2P network are
identified by keys and these keys are also mapped to ID values of the same length. Each
object is maintained on the peer with the smallest ID which is equal to or higher than
the object's ID. In our example, the object with the ID k83 is maintained by the peer with
ID p87.

To speed up the search for an object with a given key, each peer maintains a finger
table. This table contains the IP address of a peer halfway around the ring, a quarter
around the ring, an eighth around the ring, and so forth. In our example, the finger table
for peer p24 is given. In case of a query, a peer p forwards the request to its successor
in the ring, except for situations where the ID of the requested object is higher than the
ID of a peer in the finger table of p. In this case, the request is forwarded to the peer in
the finger table with the greatest ID smaller than the ID of the requested object. Fig. 5
depicts the course of a search for the object with ID k83 issued by peer p24. Obviously,
the cost of a query (i.e., the number of peers which are involved) grows logarithmically
with the number of peers in the network.

To maintain the ring structure in a volatile P2P network, some redundancy has to
be introduced [36]. The higher the redundancy, the more reliable the network becomes.

Fig. 5 A Chord Ring and the Course of a Query in the Ring

150 Andreas Henrich

Finally, it has to be mentioned that the peer responsible for a given object according to
its ID can either maintain the object itself or a reference to the peer physically storing
the object.

A Chord-like structure can also be used for simple keyword-based text search op-
erations. Here each object is associated with a small set of keywords. These keywords
are mapped to IDs and a reference to an object is maintained on all peers which are re-
sponsible for one of its keywords IDs. This can be seen as a first step towards inverted
files distributed in a P2P network (cf. section 3.2).

CAN— A d-dimensional Implementation of DHTs. Content Addressable Net-
works (CANs) [30] provide another way to realize a distributed hash table. To this end,
a CAN uses a d-dimensional Cartesian coordinate space. The coordinate space is parti-
tioned into hyper-rectangles, called zones. Each peer is responsible for a zone. A key is
associated with a point in the coordinate space. For example, a key can be mapped to
an ID and the ID can be used to generate the coordinate values by interleaving. For d =
2, the first, the third, the fifth, … bit form the coordinate value in the first dimension
and the second, the forth, the sixth, … bit form the coordinate value in the second di-
mension. This way each object is maintained at the peer whose zone contains the coor-
dinates derived from the object’s key. In order to process queries, each peer maintains
a routing table of all its bordering neighbors in the coordinate space (cf. Fig. 6).

Fig. 6 2-dimensional Coordinate Space of a CAN

Search Support in Data Management Systems 151

If we search for an object with a given key, the query is forwarded along a path that
approximates the straight line in the coordinate space from the peer posing the query to
the peer maintaining the key. To this end, each peer forwards the query to its neighbor
closest in the coordinate space to the peer maintaining the key. The cost of a query proc-
essed this way is where N denotes the number of peers in the network. This
becomes for d = 2.

At first glance, one might think that a CAN could also be used for similarity queries
in a d-dimensional space. For this, we could use d-dimensional feature vectors instead
of interleaved IDs in order to position the objects in the d-dimensional coordinate space.
Unfortunately, this approach fails because, due to the curse of dimensionality, we
would have to access all peers in order to obtain the most similar object in this way for
d > 10. Furthermore, the administrative data which has to be maintained on each peer
would be rather huge for high values of d. Another weak aspect from our point of view
is that CANs (as any distributed index structure) require sending a substantial amount
of feature vectors (possibly all of them) to other peers when entering the network ([37]
takes this approach).

3.2 Performing Similarity Queries in P2P Networks

While most DHTs deal with one-dimensional IDs (CANs, as an exception use low-di-
mensional vector spaces for routing), there is now more and more research concerning
information retrieval queries in P2P networks.

Performing Content-Based Queries on Text Data. Joseph [20] proposes Neu-
roGrid, which (like some other current P2P approaches) permits keyword-based search
for annotated items. NeuroGrid exploits the fact that each item is described by just a few
keywords. As in Freenet, routing tables are maintained in each peer to guide the query
processing.

FASD [21] uses the same query routing scheme as Freenet, however, it uses term
vectors of full documents (i.e., the vector of words present/absent in a document) to
make the routing decisions. This approach is particularly effective in situations where
the queries consist of only a few keywords. On multi-keyword queries, however, this
scheme is likely to suffer from the curse of dimensionality.

Cuenca-Acuna and Nguyen [8] provide full-text information retrieval in their Plan-
etP system. In PlanetP, the content of each peer is summarized using a bloom filter. A
bloom filter is a bit array that represents a set S with fewer than |S| bits. In this case, the
set represented by the bloom filter is the set of terms (words) present in a peer. Each
peer distributes its bloom filter using a rumor-spreading algorithm. Thus after a short
period of time all peers contain the descriptors of all other peers within the network.
Query processing is done by visiting peers starting with the most probable provider of
a match.

Similarity Queries for Multimedia Data. Tang et al. [37] present two approach-
es for text retrieval in P2P systems and suggest that these approaches can be extended

O d Nd

O N

152 Andreas Henrich

to image retrieval. One of them (pVSM, peer vector space model) stores (term,
document_id) pairs in a DHT, and then retrieves such pairs to perform text retrieval. Ac-
cording to the authors this approach can be handled due to the fact that terms are Zipf
distributed, and one can thus limit the index for each document to a few strongly
weighted terms. This approach seems to be hard to translate to image data: [35] reports
the need for a large number of features when using text information retrieval methods
on image data.

The other approach suggested in [37], pLSI, is based on Latent Semantic Indexing:
Singular Value Decomposition is used to decrease the dimensionality of the feature vec-
tors, and the reduced feature vectors are stored in a hierarchical version of a CAN
(eCAN). For each document of the collection, (feature vector, document id) pairs are
stored in the eCAN. The curse of dimensionality is addressed by partitioning each fea-
ture vector into several lower-dimensional feature vectors. Each of these vectors is said
to be in a plane. The first of these lower-dimensional partial vectors is stored in a CAN1,
the second in CAN2 and so on through CANm. A given query is then split into several
queries of lower dimensionality. Together with aggressive pruning, Tang et al. manage
to achieve impressive results on text data: few nodes need to be accessed for achieving
a high precision. The future will have to show whether or not these results can also be
achieved on image data.

Ng and Sia [28] present the Firework Query Model for information retrieval and
CBIR in P2P networks. In the Firework Query Model, there are two classes of links,
normal random links, and privileged attractive links. A query starts off as a flooding
query forwarded to all neighbors. If a peer deems the query too far away from the peer’s
local cluster centroid, it will forward the query via a random link, decreasing the time
to live (TTL) of the query, which gives a limit for the number of hops a query can make.
Otherwise, it will process the query, and forward it via all its attractive links without
decreasing the TTL. From these approaches two main research directions can be iden-
tified:

• pVSM can be seen as a distributed implementation of an access structure—or, more
specifically, of inverted files. Here the single files carrying references to the objects/
documents containing a certain word are distributed in the P2P network. For a query
consisting only of very few words this might be adequate. However, with queries
containing multiple terms the merging of the lists will cause a significant communi-
cation overhead.

• Techniques like PlanetP are based on short content descriptions for each peer’s con-
tent. In PlanetP, each peer stores compact descriptions of all other peers in the net-
work. With a given query, it can forward the query only to those peers which seem
promising according to their compact description.

A Scalable Approach to Similarity Queries Using Peer Descriptions. To
conclude the considerations on similarity queries in P2P networks, we want to sketch
the Rumorama approach [24] aiming towards scalable summary-based search in P2P
networks. The goal of the Rumorama protocol is to establish a robust hierarchy of Plan-

Search Support in Data Management Systems 153

etP networks. The leaves within the Rumorama hierarchy are PlanetP networks (called
leaf nets). Inner nodes within the Rumorama hierarchy allow accessing the leaf nets.

The situation in a Rumorama net is depicted in Fig. 7 analogously to the situation
for a CAN in Fig. 6. As usual, each peer is identified by an ID. The ID of the peer used
as the querier in Fig. 7 is 01011000... . This peer is located in a leaf net (indicated by a
grey rectangle with a dashed border) and it maintains compact peer descriptions for all
18 peers in that leaf net. With all peers in the leaf net the peer shares the first two bits
“01” of its ID. More precisely, each peer maintains a so-called friends’ mask represent-
ing the prefix of the ID which is equal for all peers in the leaf net. In our case, the
friends’ mask is 01. In order to communicate with peers in other leaf nets, our peer
maintains additional information about simple neighbors. In contrast to friends in the
leaf net, the peer does not maintain compact peer descriptions for its neighbors. Our ex-
ample peer has two neighbors for each bit in its friends’ mask. It has a neighbor with an
ID starting with 0 and it has a neighbor with an ID starting with 1 for the first bit. For
the second bit, it has a neighbor with an ID starting with 00 and it has a neighbor with
an ID starting with 01.1

When a peer wants to issue a query it is important to distribute the query to all leaf
nets. For this, the querier forwards the query to its neighbors with an ID starting with 0
and with an ID starting with 1. In addition, the query is augmented with a parameter de-
noting the length of the prefix already covered in the distribution process (1 for the first
step). The two peers, contacted in that way, check whether the length of the prefix pre
already covered in the distribution process is equal to or greater than the length of their
friends’ mask. In that case, a leaf net is reached and in this leaf net the query can be
processed for all peers with prefix pre. Otherwise, the query is forwarded to the neigh-
bors maintained by these peers at the next level.

In Fig. 7, the course of a query is sketched. The indicated querier forwards the query
to two neighbors (one with an ID starting with 0 and one with an ID starting with 1).
For these two peers, leaf nets are not yet reached and therefore the query is again for-
warded to the respective neighbors for prefix length two.

The prefixes are indicated in Fig. 7 in squared brackets. Note that this second step
is processed in parallel on the two peers reached in the first step. For the peers reached
with the prefixes 11, 10 and 01 leaf nets are now reached. Only the peer reached for the
prefix 00 has to forward the query one more time. Now five leaf nets forming a disjoint
and exhaustive partitioning of the whole P2P network are reached and the query is proc-
essed in each leaf net. If the querier is interested in the k best matches, they are calcu-
lated for each leaf net separately. Thereafter the results obtained for the leaf nets are
merged following the paths on which the query was distributed in reverse order.

Obviously, this schema cannot overcome the curse of dimensionality. But it allows
for a scalable implementation of PlanetP-like P2P networks. Peers have to maintain

1. Note that it is necessary in the concrete implementation to maintain some redundant
neighbors in order to keep the system fit for work in a volatile network. Furthermore, it
has to be noted that each peer can decide the length of its friends’ mask independently and
that this length can be changed during the lifetime of a peer.

154 Andreas Henrich

compact peer descriptions only for a small set of peers with tunable size and the query
distribution can be performed in logarithmic time. For the local processing of the que-
ries in the leaf nets, various heuristics trading result quality for processing time are ap-
plicable. For example, we could access only a fixed fraction of the peers in each leaf net
concentrating on the peers most promising according to their compact representation.

4 Conclusion

In the present contribution, we have discussed the efficient processing of similarity que-
ries in a central scenario and in a P2P scenario. Since algorithms for simple similarity
queries have reached a mature level for the central scenario the focus is now turning to
complex similarity queries with multiple ranking criteria based on a complex object
schemata. For the P2P scenario, scalable algorithms for content-based similarity queries
are currently coming up. Here thorough analytical and experimental considerations of
the upcoming concepts will be necessary in order to reach a mature and commercially
applicable state of the systems.

Fig. 7 Distribution Example of a Similarity Query to the Leaf Nets in Rumorama

Search Support in Data Management Systems 155

References

[1] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM press. Pearson
Education Limited, Harlow, England, 1999.

[2] Balakrishnan, H., Kasshoek, M. F., Karger, D., Morris, R., Stoica, I.: Looking Up Data in
P2P Systems. Commun. ACM, 46(2):43–48, Feb. 2003.

[3] Balko. S., Schmitt, I.: Efficient Nearest Neighbor Retrieval by Using a Local Approxima-
tion Technique - the Active Vertice Approach. Technical Report 2, Fakultät für Informa-
tik, Universität Magdeburg, 2002.

[4] Buckley, C., Lewit, A.: Optimization of inverted vector searches. In Proc. 8th Internation-
al ACM SIGIR Conference on Research and Development in Information Retrieval, pages
97–105, New York, USA, 1985.

[5] Carey, M. J., Kossmann, D.: On saying “Enough already!” in SQL. In Proc. 1997 ACM
SIGMOD Intl. Conf. on Management of Data, pages 219–230, Tucson, Arizona, 13–
15 June 1997.

[6] Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In Proc. 25th Intl. Conf. on
Very Large Data Bases, September, 1999, Edinburgh, Scotland, UK, pages 397–410,
1999.

[7] Clarke, I., Sandberg, O., Wiley, B., Hong, T. W.: Freenet: A distributed anonymous infor-
mation storage and retrieval system. In H. Federrath, editor, Designing Privacy Enhancing
Technologies, volume 2009 of LNCS, 2000.

[8] Cuenca-Acuna, F. M., Nguyen, T. D.: Text-Based Content Search and Retrieval in ad hoc
P2P Communities. Technical Report DCS-TR-483, Department of Computer Science,
Rutgers University, 2002.

[9] Fagin, R., Lotem, A., Naor, M.:. Optimal aggregation algorithms for middleware. In Proc.
10th ACM Symposium on Principles of Database Systems: PODS, pages 102–113, New
York, USA, 2001.

[10] Fagin, R., Wimmers, E. L.: A formula for incorporating weights into scoring rules. Theo-
retical Computer Science, 239(2):309–338, May 2000.

[11] Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image data-
bases. In VLDB 2000, Proc. 26th Intl. Conf. on Very Large Data Bases, pages 419–428,
Cairo, Egypt, 2000.

[12] Härder, T., Rahm, E.: Datenbanksysteme: Konzepte und Techniken der Implementierung.
Springer, Heidelberg, 2nd edition, 2001.

[13] Henrich, A.: A distance scan algorithm for spatial access structures. In Proc. of the 2nd
ACM Workshop on Advances in Geographic Information Systems, pages 136–143, Gaith-
ersburg, Maryland, USA, 1994. ACM Press.

[14] Henrich, A.: The LSDh-tree: An access structure for feature vectors. In Proc. 14th Intl.
Conf. on Data Engineering, February 23-27, 1998, Orlando, Florida, USA, pages 362–
369. IEEE Computer Society, 1998.

[15] Henrich, A., Robbert, G.: Combining multimedia retrieval and text retrieval to search
structured documents in digital libraries. In Proc. 1st DELOS Workshop on Information
Seeking, Searching and Querying in Digital Libraries, pages 35–40, Zürich, Switzerland,
Dec. 2000.

156 Andreas Henrich

[16] Henrich, A., Robbert, G.: Ein Ansatz zur Übertragung von Rangordnungen bei der Suche
auf strukturierten Daten. In Tagungsband der 10. Konferenz Datenbanksysteme für Busi-
ness, Technologie und Web (BTW 2003), volume 26 of LNI, pages 167–186, Leipzig,
Deutschland, Feb. 2003. GI.

[17] Henrich, A., Robbert, G.: Comparison and evaluation of fusion algorithms and transfer se-
mantics for structured multimedia data. In C. Danilowicz, editor, Multimedia and Network
Information Systems (Vol. 2) (1st International Workshop on Multimedia Information Sys-
tems Technology), pages 181–192, Szklarska Poreba, Poland, September 2004. Oficyna
Wydawinicza Politechniki Wroclawskiej.

[18] Herstel T., Schmitt, I.: Optimierung von Ausdrücken der Ähnlichkeitsalgebra SA. In IN-
FORMATIK 2004 - Informatik verbindet - Beiträge der 34. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), Band 2, volume P-51 of LNI, pages 49–53, Ulm, Germany, Sep-
tember 2004.

[19] Hjaltason, G. R., Samet, H.: Ranking in spatial databases. In Advances in Spatial Databas-
es, 4th International Symposium, SSD’95, Portland, Maine, USA, August 6-9, 1995, Pro-
ceedings, volume 951 of LNCS, pages 83–95. Springer, 1995.

[20] Joseph, S.: Adaptive routing in distributed decentralized systems: Neurogrid, Gnutella and
Freenet. In Proc. of workshop on Infrastructure for Agents, MAS, and Scalable MAS, at
Autonomous Agents, Montreal, Canada, 2001.

[21] Kronfol, A. Z.: A Fault-tolerant, Adaptive, Scalable, Distributed Search Engine, May
2002. Final Thesis, Princeton.
URL: http://www.searchlore.org/library/kronfol_final_thesis.pdf

[22] Lomet, D. B., Salzberg, B.: The hb-tree: A multiattribute indexing method with good guar-
anteed performance. ACM Trans. Database Syst., 15(4):625–658, 1990.

[23] Müller, H., Squire, D. M., Müller, W., Pun, T.: Efficient access methods for content-based
image retrieval with inverted files. Technical Report 99.02, Computer Vision Group, Uni-
versity of Geneva, July 1999.

[24] Müller, W., Eisenhardt, M., Henrich, A.: Scalable summary-based search in P2P networks.
submitted for publication, 2004.

[25] Müller, W., Henrich, A.: Faster exact histogram intersection on large data collections using
inverted VA-files. In Image and Video Retrieval: 3rd Intl. Conf. CIVR. Proceedings, vol-
ume 3115 of LNCS, pages 455-463, Dublin, Ireland, July, 2004. Springer.

[26] Müller, W., Henrich, A.: Reducing I/O cost of similarity queries by processing several at
a time. In Proc. MDDE ’04, 4th International Workshop on Multimedia Data and Docu-
ment Engineering, Washington DC, USA, July 2004. IEEE Computer Society.

[27] Natsev, A., Chang, Y.-C., Smith, J. R., Li, C.-S., Vitter, J. S.: Supporting incremental join
queries on ranked inputs. In VLDB 2001, Proc. of 27th Intl. Conf. on Very Large Data Bas-
es, pages 281–290, Roma, Italy, 9 2001.

[28] Ng, C. H., Sia, K. C.: Peer clustering and firework query model. In Poster Proc. of The 11th
Interational World Wide Web Conf., Honululu, HI, USA, May 2002.

[29] Pfeifer, U., Pennekamp, S.: Incremental Processing of Vague Queries in Interactive Re-
trieval Systems. In Hypertext - Information Retrieval - Multimedia ’97: Theorien, Modelle
und Implementierungen integrierter elektronischer Informationssysteme, pages 223–235,
Dortmund, 1997. Universitätsverlag Konstanz.

[30] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-ad-
dressable network. In Proc. 2001 Conf. on applications, technologies, architectures, and
protocols for computer communications, San Diego, CA, 2001.

Search Support in Data Management Systems 157

[31] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In Proc. 1995 ACM
SIGMOD Intl. Conf. on Management of Data, San Jose, California, May 22-25, 1995, pag-
es 71–79, 1995.

[32] Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: The A-tree: An index structure for
high-dimensional spaces using relative approximation. In Proc. of the 26th Intl. Conf. on
Very Large Data Bases, pages 516–526, Cairo, 2000.

[33] Schmitt, I., Schulz, N.: Similarity relational calculus and its reduction to a similarity alge-
bra. In 3rd Intl. Symposium on Foundations of Information and Knowledge Systems
(FoIKS’04), volume 2942 of LNCS, pages 252–272, Austria, 2004. Springer.

[34] Smith, I., Chang, S.-F.: VisualSEEK: A fully automated content-based image query sys-
tem. In Proc. of the 4th ACM Multimedia Conf., pages 87–98, New York, USA, Nov.
1996.

[35] Squire, D. M., Müller, W., Müller, H., and Raki, J.: Content-based query of image data-
bases, inspirations from text retrieval: inverted files, frequency-based weights and rele-
vance feedback. In 11th Scandinavian Conf. on Image Analysis, Kangerlussuaq, Green-
land, 1999.

[36] Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-
To-Peer lookup service for Internet applications. In Proc. ACM SIGCOMM Conf., San Di-
ego, CA, USA, 2001.

[37] Tang C., Xu, Z., Mahalingam, M.: pSearch: Information retrieval in structured overlays.
In First Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ, 2002.

[38] Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for sim-
ilarity-search methods in high-dimensional spaces. In Proc. Intl. Conf. on VLDB, New
York, USA, 1998.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 161-180, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward Automated Large-Scale

Information Integration and Discovery

Paul Brown, Peter Haas, Jussi Myllymaki,
Hamid Pirahesh, Berthold Reinwald, Yannis Sismanis

IBM Almaden Research Center
{pbrown1, phaas, jussi, pirahesh, reinwald, syannis}@us.ibm.com

Abstract. The high cost of data consolidation is the key market inhibitor to
the adoption of traditional information integration and data warehousing so-
lutions. In this paper, we outline a next-generation integrated database man-
agement system that takes traditional information integration, content man-
agement, and data warehouse techniques to the next level: the system will be
able to integrate a very large number of information sources and automatical-
ly construct a global business view in terms of “Universal Business Objects”.
We describe techniques for discovering, unifying, and aggregating data from
a large number of disparate data sources. Enabling technologies for our solu-
tion are XML, web services, caching, messaging, and portals for real-time
dashboarding and reporting.

1 Introduction

Efficient business management requires a flexible, unified view of all data in the enter-
prise. Many mid-sized and large companies are now facing the challenging problem of
bringing together all of their data in a unified form. Enterprise business data is typically
spread across hundreds or thousands of sources: inside applications such as SAP,
Siebel, and PeopleSoft, on web sites, as syndicated data feeds, in content-management
warehouses and marts, in email archives, in spreadsheets and other office documents,
and inside a tremendous variety of custom applications. Data collected over a long pe-
riod of time is juxtaposed with ready-made data sources that come as part of turnkey
systems.

Disparate data sources are brought together through business acquisitions and
mergers. The various operational systems within an enterprise are usually isolated, have
data that is inconsistent both in format and semantics with other operational systems,
and offer different end-user tools for data retrieval and reporting. There is a marked lack
of data integrity; for example, a given entity can have different names in different op-
erational systems, distinct entities can have the same name, and an entity may exist in
some systems but not in others. Adding to the problem, most traditional databases were

162 Paul Brown et al.

not designed with future data integration in mind. These databases, which place a pre-
mium on data integrity and consistency, are usually encased in a very large body of dif-
ficult-to-change procedural code that is inextricably entwined with the schema seman-
tics.

The major costs of an integration project are usually incurred while trying to “un-
derstand the data,” i.e., trying to figure out the schema of each input data source, the
constraint rules that govern the data in each schema, and, perhaps most importantly, the
rules that describe the relationships between data from different sources. These asser-
tions are borne out in the traditional setting for data integration, namely data warehous-
ing. Traditional warehouses try to provide a unified view of the data while hiding the
diversity of the underlying operational systems. Experience with data-warehousing
projects suggests that the capital cost of integration is very high, and an average design
time of six months to two years causes many projects to fail. Manual schema integration
constitutes the bulk of the expense. At least one vendor [11] estimates that labor costs
for large warehousing projects currently comprise 70% of the total costs, and we believe
that the relative labor costs for traditional warehousing solutions will only increase in
the future. The initial per-document cost of enterprise content management systems is
less than that of data warehouses, but the deep document-analytic functionality provid-
ed by content management systems is frequently inferior to the BI capabilities of data
warehouses.

In this paper, we outline a next-generation integrated database management system
(DBMS) that brings together information integration, content management, and data
warehousing with business intelligence. The integrated DBMS (1) taps into the data
flow between operational systems and captures raw data, (2) automatically constructs a
global business view in terms of Universal Business Objects (UBOs), (3) provides
warehousing functionality for the UBOs such as cube queries, advanced analytics, and
efficient propagation of data changes, and (4) provides rich interfaces for browsing and
searching UBOs that hide the details and variety of the underlying operational systems.
We take a data-centric integration approach in that we capture raw data only, and do not
rely on any schema information. To ensure that the system scales to very large numbers
of information sources, we employ asynchronous messaging and crawling techniques
similar to those found in web-scale applications such as Google. We apply machine-
learning techniques to map information across disparate sources, and develop new al-
gorithms to map information sources into higher-level business artifacts; these artifacts
can either be discovered by the system or introduced into the system through enterprise
data dictionaries, taxonomies, and ontologies. We introduce a new query paradigm that
takes queries over UBOs and converts them into queries over specific information
sources based on discovered relationships between their sources. The enabling core
technologies for this next-generation integrated DBMS are XML, web services, tools
for information dissemination and dashboards, frameworks for unstructured informa-
tion management (such as IBM’s UIMA architecture) and advanced search capabilities.

Toward Automated Large-Scale Information Integration and Discovery 163

2 A Next-Generation Integrated Database Management
System

In this section, we outline the architecture of a next-generation integrated DBMS, giv-
ing a high-level view of the components and the flow of data through the system. We
also describe a hypothetical end-to-end application scenario.

2.1 Architecture

Fig. 1 outlines the architecture of the integrated DBMS. The architecture comprises
three layers: the operational systems layer, the integrated DBMS layer, and the business
applications layer. The operational layer at the bottom of the figure displays some typ-
ical data sources that might exist in an enterprise, such as CRM and HR applications
with proprietary data formats or database schemas, content management systems, and
Office productivity tools. The operational systems in an enterprise interoperate today
through synchronous or asynchronous communication such as message queues, email,
paper, and so forth, typically in a point-to-point and ad hoc fashion. In the future, web
services and the “enterprise service bus” (ESB)—which provides mediation and trans-
formation services—will play an important role in facilitating interoperability. The
communication trail for a business transaction can usually be reconstructed based on
application-specific information in the exchanged data. For example, we observe that a
customer sent an order referencing the customer ID, that the seller sent an invoice ref-
erencing the order ID, and so forth. Whereas this kind of information is sufficient for
reasoning about point to point operational interactions, approaching an enterprise top-
down from the business layer requires an integrated business view to answer high-level
queries or automatically produce high-level reports. The goal of our integrated DBMS
is to close the gap between the business layer and the operational layer.

The integrated DBMS taps into the operational data flow to capture input data. The
system analyzes the input data, assigning the incoming data values to disjoint “data
sets” and then computing a synopsis for each data set. The synopsis is then used to com-
pute one or more “signatures” for each data set. The signatures can then be used to de-
rive similarity measures between a pair of data sets. In particular, by identifying simi-
larities between an input data set and a reference data set, the system can identify low-
level business artifacts such as “telephone number” or “North American surname.” Us-
ing methods from graph theory, these low-level identifications can be combined and
used to identify higher-level artifacts such as “customer”, “order”, “account”, and so
forth. We call these high-level artifacts Universal Business Objects (UBOs). The data
sets that define a UBO may come from different data sources. Relationships between
the UBOs can also be identified. Enterprise data dictionaries, ontologies, and reference
data all may be incorporated in the foregoing process. The system permits the UBOs
and other discovered metadata to be cached or instantiated in the integrated DBMS for
purposes of indexing, querying, etc., just like ordinary warehouse data today. The

164 Paul Brown et al.

UBOs are also exposed to the business applications for rich browsing, search, report
generation, data analysis, UBO updating, and real-time dashboards.

2.2 Repository Dataflow

In this section, we describe in more detail the dataflow within the integrated DBMS
(Fig. 2). The details of the various components in the dataflow are described in subse-
quent sections.

The integrated DBMS takes in a large collection of XML documents. The docu-
ments in the collection are partitioned into mutually disjoint sets, and we say informally
that documents in the same partition come from the same data source. Heuristically,
documents from the same data source are similar to one another in origin, destination,
structure, and content. For example, a given data source might comprise the XML mes-
sages returned from a specified web service in response to a particular kind of message,
or perhaps the source might comprise purchase orders generated by a specified applica-
tion.

The data values in the XML documents that come from a given data source are as-
signed to disjoint data sets, as follows. Each XML document from a given data source
can be viewed as a “tree data structure”, with data values stored at the leaf nodes. Each
leaf node (as well as each internal node) of the complex structure is uniquely identified
by an XPath expression; the set of XPaths (i.e., nodes) for a given data source can be
computed simply by submitting every XML document from the data source to a generic
SAX parser. There is a data set associated with each leaf node, and for the ith leaf node

ESB, ETL,
Web Services,
E-Mail

Large Number of Sources (Crawler Scale)

ECM (reports, spread-

sheets, financial docs

(XBRL))

Office

documents,

E-Mail

ERP (SAP), CRM

WBI, BPM, SCM

(new OLTP)

Content Repository

e.g. zip = { 95125, 95120..},
state = { AK ,AL , CA }

e.g. what is an account?

e.g. account -> [customer, orders],
customer -> [name, address],
address -> [street, city, state, zip]

Real time Dashboard
Rich Browse, Search,
and Query Ranking

Integrated
DBMS Order

Account

Customer

business objects
object cache
index
synopsis
spreadsheets
Reports, XBRL

BI Reporting, Data Analysis

Browsing/Search: Find summary reports about customer complaints and product sales?
Analysis: What is my overall risk exposure due to competition price cut?

What is my overall opportunity due to IT increased spending?
How does my customer s buying behavior vary month to month?

Dashboard: Business measures and Alerting

CM/Xquery Engine ESDD

Ontology

Reference Data

1. DBA-less creation of Meta data
Count- & pattern-based
Similarities

2. UBOs: discover, define, match
3. XQuery/OLAP functions

Fig. 1 System Architecture

Toward Automated Large-Scale Information Integration and Discovery 165

we denote the corresponding data set as dsi = {v1,v2,…,vn}, where vj is the data value at
the ith leaf node in the jth XML document from the specified data source. Observe that
dsi is a multiset, because the same data value can appear in multiple documents. Also
observe that each data set can be identified uniquely by data source and XPath expres-
sion for the corresponding leaf node. The domain associated with a data set ds is the set
of distinct values obtained from ds after removal of duplicates.

As described in subsequent sections, the DBMS computes a synopsis of each data
set from a given data source. The synopsis contains statistical information about the
data set such as sample values and histogram data. The resulting synopses for the data
source are stored in the DataSet repository. For each data set, the DBMS uses the syn-
opsis to derive one or more signatures; a signature summarizes a specific characteristic
of the data set that is pertinent to evaluating the similarity of the data set to other data
sets. The signatures are stored with the corresponding data set in the DataSet repository.
In our initial prototype, the signatures comprise a space-constrained concise Bernoulli
sample and a hash-counting data structure. Patterns are, for example, rules for phone
numbers, credit card numbers, zip codes, and so forth. The pattern signature is derived
from the synopsis using an automaton-based technique that is described in a subsequent
section.

Next, the DBMS uses the signatures to compute similarities between data sets. The
computed similarities for each related pair of data sets are combined via a Synthesize
function and stored in the Similarities repository. When there are N input data sets, a
direct pairwise comparison of all these data sets is an O(N2) operation. Since N is usu-
ally very large, such a computation is typically too expensive. The DBMS therefore first
compares each input data set to one or more reference data sets, where a reference data
set is typically derived from a data dictionary, ontology, or from a previous discovery
phase of the DBMS. Such a comparison is typically an O(NM) operation, where M is
the number of reference data sets. Because M is typically smaller than N by orders of
magnitude, this computation is usually feasible. Then, when comparing input data sets,
only data sets that are both similar to a common reference data set need to be compared.

The similarity-identification process now proceeds from low-level data sets to high-
er-level structures. After computing similarities for leaf-level nodes in the XPath only
(e.g. city, zip code, street name), the DBMS invokes the Matcher component to com-
pute similarity metrics between internal nodes, e.g., address, customer. The Matcher al-
gorithms are based on graph theory. In addition to computing similarity metrics, the
DBMS also identifies constraints between pairs of data sets such as key-to-foreign-key
relationships and functional dependencies; the data sets in a pair may be from the same
or different data sources. Finally, given all the similarities between data sets, the simi-
larities between internal nodes, and the discovered constraints, the DBMS applies a re-
cursive splitting algorithm to discover UBOs.

2.3 A Hypothetical Application Scenario

To make the forgoing discussion more concrete, we now describe a hypothetical (small
scale) end-to-end application scenario. This scenario encompasses a collection of data

166 Paul Brown et al.

sources at the lowest level and a client spreadsheet application at the highest level (see
Fig. 3). We capture XML documents from four data sources. The system analyzes the
data sources, discovers the data sets, and computes both XPath identifiers and synopses.
Suppose that three sources of reference data are available: product category information
from the United Nations Standard Products and Services (UNSPSC), time information
(i.e., a calendar), and location information from the United States Census Bureau. The
system creates synopses for the reference data as well.

The system would then analyze the data sources and reference data to compute sim-
ilarities between data sets and composite nodes. Ultimately the system would identify
three new UBOs W', X', and Y' along with their domains, constraints, and relationships
both to each other and to the metadata. Semantic analysis of W', X', and Y' might sug-
gest names such as Customer, Product, and Order. Applying some OLAP tools, the sys-
tem can then generate a spreadsheet containing the quarterly sales figures.

3 Automated Similarity Analysis

In this section, we describe in more detail the various techniques that the DBMS uses
to create synopses, compute signatures, derive similarity measures for both data sets
and internal XML nodes, and discover constraints.

UBO

definition

Similarity

XPath2 Synthesize (M1, , M10)XPath1

Count-based:
p (v A | v B) (M5)
p (v B | v A) (M6)

Pattern-based:
String edit distance (M1)
DFA similarity (M2)
Value set similarity (M3)
Convergence similarity (M4)

UBO

Discovery name

Matcher

XML
data source

<customer>
<city>San Jose</city>

</city>

/customer/city/order/city

1

3

<order>
<date>10/14/2004</date>
<city>San Jose</city>

</order>

4

DataSet

Signature 1XPath Synopsis
/order/date

2

/customer/city

/order/city

Signature 2

Eg: RegExp, probabilistic
count bit-mask, simple
random sample, tails
of the distribution,
histogram.

Distribution Based:
Manhattan distance (M7)
Euclidian distance (M8)
Max distance (M9)
Chi-Squared (M10)

SimilaritySynopsis

Fig. 2 Repository Dataflow

Toward Automated Large-Scale Information Integration and Discovery 167

3.1 Synopsis Creation

The synopsis maintained for a data set in our current prototype comprises several com-
ponents. The first component is a space-constrained sample from which a uniform ran-
dom sample can be extracted as needed. If the number of distinct values in the incoming
data is small enough, the sample can be stored in a concise form similar to that described
in [5].

The second key component of the synopsis is a hash-counting data structure. The
idea is that each incoming data element is fed into a “probabilistic counting” algorithm;
see, e.g., [2]. Such algorithms estimate the number of distinct values in a data set in a
single pass using a fixed amount of memory. The value of the incoming element is
hashed, and this hash value is used to update an appropriate data structure. The data
structure is then used to estimate the number of distinct values. In the most naïve algo-
rithm, the data structure is simply a bit vector, where each bit corresponds to a hash
bucket. For most algorithms, it is the case that two hash-data structures created from
two disjoint data sets can be combined into a single structure of the same type and used
to estimate the number of distinct values in the union of the data sets.

Other information maintained in the synopsis includes the data set cardinality, the
path expression that specifies the data set, and the k highest and k lowest data values
encountered, along with corresponding frequency counts.

zw x

Reference DataUBOs

~800 XML docs
(12M)

ProdCategory: Synopses .7M, 15 XPath
(UNSPSC)
TIME Synopses 150K, 1 XPath
LOCATION Synopses 28K, 6 XPath
(census bureau)

~28 XML docs
(100K)

0.5M Synopses
129 XPath

6.1M Synopses
1103 Xpath

0.4M Synopses
85 XPath

1.7M Synopses
389 XPath

y
~800 XML docs

(30M)

3.5M Synopses
500 XPath

~24 XML docs
(500K)

~1700 XML docs
(43M)

X’ (Product)

Time

W’ (Customer)

Data

Sources

Y’ (Order)

UNSPSCLocation

Spread
sheet

Fig. 3 Example

168 Paul Brown et al.

3.2 Signature Creation

As mentioned previously, one or more signatures are computed for each data set, and
are subsequently used to derive similarity measures. The signatures currently used in
our prototype are the synopsis hash-counting structure itself and a regular-expression
representation of a pattern. We discuss statistics-based signatures, as well as pattern-
based signatures and hybrids of the two signature types.

Statistics-Based Signatures. A classical statistics-based signature is a lossy histo-
gram representation of the data value distribution in the data set. Here, the set of possi-
ble data values is partitioned into disjoint buckets and a count is maintained for each
bucket. More sophisticated histograms are available; see [7] for a comprehensive tax-
onomy of histogram types. We are currently investigating other kinds of statistics-based
signatures. We focus here on pattern-based signatures, because such signatures are rel-
atively novel. Also, as discussed below, it appears possible to develop signatures that
are both pattern- and statistics-based.

Pattern-Based Signatures. Pattern-based signatures complement statistics-based
signatures and provide an alternate way to characterize a data set. Pattern-based signa-
tures can reveal similarities between data sets that statistics-based signatures will miss.
For example, one data set might contain telephone numbers in the 408 area code while
another may contain telephone numbers in the 650 area code. A statistics-based synop-
sis can be computed for each data set, but comparing the two data sets via their statis-
tics-based synopses might reveal no similarity between the data sets because they have
no values in common. Yet clearly the two sets are similar because both contain tele-
phone numbers. A similar problem occurs when the values of two data sets are format-
ted differently. For instance, the data sets might contain the same set of telephone num-
bers but use different delimiters to separate an area code from the local phone number.

Pattern-based signatures are computed by taking the sample data values stored in
the synopsis of a data set and determining a regular expression that is matched by (al-
most all of) the values in the data set. Pattern discovery is based on the theory of deter-
ministic finite automata and builds on the existing work on induction of regular lan-
guages and DFAs [1, 3, 8]. A matching automaton consists of nodes, transitions and
symbol ranges and is constructed incrementally for a given input value set. A node
matches a symbol (character) or range of symbols appearing in a specific position of an
input value. A directed arc between two nodes-source and destination-means that the
source symbol immediately precedes the target symbol. Fig. 4 shows a sample autom-
aton that matches postal codes defined by “950xx” where x can be any digit.

Fig. 4 Pattern for Matching Postal Codes 950xx

Start Finish9 5 0 [0-9] [0-9]

Toward Automated Large-Scale Information Integration and Discovery 169

The pattern-signature computation includes a set of expansion steps on the autom-
aton to make it more general. For instance, if the input value set consists of digits 0-3,
5, and 7-9, we might want to expand the set to cover all digits 0 through 9. We measure
expansion as the ratio of the size of the expanded set to the size of the input set, so for
this example the expansion ratio would be 10 to 8, or an expansion factor of 1.25. Ex-
pansion reduces the accuracy of the pattern, as in this case digits 4 and 6 were not in the
input set. A user-defined control parameter sets the upper limit for the maximum al-
lowed expansion factor.

A set of reduction steps are performed to simplify the pattern. Values that have
common prefixes share nodes in the automaton, and nodes which match identical or
similar symbol sets (after potential expansion) and share predecessor and successor
nodes can be combined. Fig. 5 shows how postal codes 950xx and 951xx are combined
into a single, compact pattern. Again, loss of accuracy is possible and a control param-
eter ensures that the pattern is not overly generic.

Repeating symbol sequences are identified and the minimum and maximum repeti-
tion length is recorded in the automaton. This allows the DBMS to detect patterns such
as the one shown in Fig. 6—a sequence of digits of length one or two.

To facilitate more accurate comparison and matching, patterns may be subjected to
further simplification by removing delimiters. A delimiter is defined as a node in the
automaton that matches exactly one symbol and is visited by all paths through the au-

Fig. 5 Merging of Nodes in Pattern

Start Finish9 5
0 [0-9] [0-9]

1 [0-9] [0-9]

Start Finish9 5
0 [0-9]

1 [0-9]
[0-9]

Start Finish9 5 0,1 [0-9] [0-9]

Fig. 6 Repeating Pattern

Start Finish[0-9]

{1,2}

170 Paul Brown et al.

tomaton. A delimiter may appear anywhere in the pattern and is easily identified and
removed from the automaton.

An alternative way to use delimiter information is to break compound values into
their constituent parts. For instance, a telephone number can be broken into three parts
(area code, exchange number, and local extension) and signatures can be computed for
each part. This enables the DBMS to match the area code part of a telephone number
with another data set that contains area codes only. Observe that the signatures for the
different parts can be statistics-based; in this manner, we can develop signatures that are
a hybrid of the statistics-based and pattern-based approaches.

Our current prototype externalizes discovered pattern signatures as regular-expres-
sion strings because of their compact form and convenience for storage and display pur-
poses. We also note that XML Schemas and XML parsers have built-in support for reg-
ular expressions and regular expression engines are readily available. Table 1 shows
several regular expressions discovered for business data sets.

3.3 Similarity Computation Between Data Sets

After computing one or more signatures for the data sets, the DBMS then computes sim-
ilarity measures between pairs of data sets; such a measure equals 0 if there is no appar-
ent similarity between a pair of data sets and becomes larger as the degree of similarity
becomes greater. Either both data sets are input data sets or one data set is an input data
set and the other data set is a reference data set.

Tab. 1 Sample Regular Expressions for Business data Sets

XPath Pattern

/SAP4_CustomerMaster/State

/SAP4_CustomerMaster/PostalCode1
/SAP4_CustomerMaster/PhoneNumber1

/SAP4_CustomerMaster/NumberOfEmploy-
ees
/SAP4_CustomerMaster/. . . /OrgEntity1
/SAP4_CustomerMaster/. . . /OrderProbabil-
ity
/SAP4_CustomerMaster/. . . /NumDelivery-
Allowed
/SAP4_Order/OrderId
/SAP4_Order/. . . /
SAP4_OrderSoldToInfo:PostalCode1
/Siebel_BCAccount/RevenueGrowth

A[LR] C [AO] [FI] L [HW]
I [MV] A
N[CV] OH TX
950 [0-9] [0-9]
[0-9] [0-9] [0-9] \ – [0-9] [0-9]
[0-9] \
- [0-9] [0-9] [0-9] [0-9]
[0-9] {2,3}
US[0-9] [0-9]1?
[0-9] [0-9]
[123]
[0-9] {1,4}
950[0-9] [0-9]
\ – [0-9] [0-9] {1,2}

Toward Automated Large-Scale Information Integration and Discovery 171

We assume that for the ith signature type there exists a similarity metric mi that
measures the similarity between any two signatures of that type. Then, given two data
sets ds1 and ds2, along with signatures s1, s2, …, sk, the most general form of a similarity
measure is

Similarity(ds1,ds2) = Synthesize[m1(s1(ds1),s1(ds2)), …, mk(sk(ds1),sk(ds2))],
where the function Synthesize combines the multiple similarity measures into a single
measure. (Actually the system allows multiple similarity measures to be computed for
each signature, as in Fig. 2). We are currently investigating possible Synthesize func-
tions.

Recall that the domain of a data set is the set of distinct values that appear in the
data set. Often the domain of a reference data set coincides with the reference data set
itself, and we call such a reference data set a domain set, which we abbreviate simply
as a domain when there is no risk of confusion, i.e., the reference data set is a true set
rather than a multiset. If there is a strong similarity between an input data set and a do-
main set, we say that we have “discovered the domain” of the input data set. Similarly,
if two input data sets are each similar to the same domain set, then we say that the two
input data sets “share the same domain.” If the system is computing a similarity measure
between an input data set and a domain set, then the system measures the similarity be-
tween the domain of the input data set and the domain set.

In the rest of this section, we describe similarity measures mi that can be computed
for different kinds of signatures, with an emphasis on the kinds of signatures that the
prototype currently computes. These measures can be used separately or combined to-
gether.

Similarity for Hash-Count Signatures: As discussed previously, one signature
that the DBMS computes is the hash-counting structure created during execution of a
probabilistic counting algorithm. This signature is identical for any two data sets having
the same domain. Thus a similarity measure on hash-count signatures is ideal for com-
paring an input data set with a domain set, since the domain of the input data set does
not need to be computed explicitly. One such measure is the Jaccard metric, which is a
normalized measure of the intersection of the domains of two data sets. The idea is to
use the probabilistic counting algorithm associated with the hash count signature to es-
timate C1 = Card[Domain(ds1)] and C2 = Card[Domain(ds2)]. Then the two hash-
count structures are merged into a combined hash-count structure and the probabilistic
counting algorithm is then applied to obtain an estimate of

C3 = Card[Domain(ds1) Domain(ds2)].
Then the size of the intersection of the two domains is computed as C4 = C1 + C2 - C3,
and the Jaccard metric is computed as J = C4 / C3.

Similarity for Histogram Signatures. A histogram summarizes the distribution
of data values within a data set. Suppose for simplicity that histogram signatures of data
sets ds1 and ds2 are exact and can be represented as vectors f1 = (f1,1,…,f1,k) and f2 =
(f2,1,…,f2,k), where fi,j is the relative frequency of the jth value in the ith data set. Then
the similarity between the two signatures can be computed, for example, as 1/d(f1,f2),
where d is any of the standard vector space metrics, e.g., Euclidean distance d(f1,f2) =

172 Paul Brown et al.

((f1,1- f2,1)2 + … + (f1,k- f2,k)2)1/2, L1 distance d(f1,f2) = |f1,1- f2,1| + … + |f1,k- f2,k|, L
distance d(f1,f2) = maxj |f1,j- f2,j| or the symmetric Kullback-Liebler distance d(f1,f2) =
(f1,1log(f1,1)/log(f2,1)) + … + (f1,klog(f1,k)/log(f2,k)) + (f2,1log(f2,1)/log(f1,1)) + … +
(f2,klog(f2,k)/log(f1,k)). Variants of these metrics are available when the histogram is
lossy or the data values are real numbers.

Similarity for Pattern Signatures. We have devised several similarity metrics
for pattern signatures. One metric, which is naive but easy to compute and useful, is ob-
tained by simply comparing the regular expression strings of each pattern. For example,
we can first compute the Levenshtein string-edit distance [8] between the regular-ex-
pression strings, divide it by the length of the longer string, and then convert the nor-
malized distance d to a similarity measure by setting m = 1 - d. For instance, patterns
“95xxx” and “96xxx” look very similar even though the underlying domains are differ-
ent. On the other hand, two patterns may define the same domain in a different way, re-
sulting in an incorrect assessment of their similarity. For instance, patterns “[1-3]” and
“1 | 2 | 3” look very different but define the same domain.

A value-based similarity measure is slightly more expensive but more reliable. For
this measure, we count the number of elements in one data set that satisfy the pattern
for the other data set, and vice versa. Data values may be generated from the pattern or
retrieved from the sample that is stored in the synopsis. Consider the following two pat-
terns “200[0-9]” and “20[01][0-9]”. The first pattern defines the domain “first decade
of 2000” and the second “first two decades of 2000”. All ten distinct values generated
from the first pattern (2000, 2001, …, 2009) are accepted by the second pattern. Half
the numbers generated from the second pattern are accepted by the first pattern. The
sum (10 plus 10) is divided by the total vocabulary size (10 plus 20) and we get a sim-
ilarity score of 2/3. Note that for the patterns of the earlier example (“[1-3]” and “1 | 2
| 3”) the similarity score would be a perfect 1.0.

3.4 Similarity Measures Between Complex Structures

We now discuss how the DBMS defines similarity measures between pairs of complex
structures. The goal is to identify complex structures that are structurally similar to oth-
er complex structures; we often call this process “schema matching”. The inputs to this
process are structure definitions and leaf-node to leaf-node similarities. Structure defi-
nitions, or parent-child relationships, can be extracted from the synopses of each data
source.

Fig. 7 illustrates a scenario where SRC A, SRC B and SRC C represent the struc-
tures of three data sources that all contain the same information, albeit structured dif-
ferently. They describe a number of products, sales of those products, and product de-
liveries consequent to sales. In SRC A, product information contains sales information,
which contains delivery information. This arrangement might be common in a product
support department where information is organized by product. SRC B might corre-
spond to a shipping department. Information is organized by delivery, with associated

Toward Automated Large-Scale Information Integration and Discovery 173

product and sales information. SRC C is a sales department and hence sales data in-
cludes products and deliveries.

The shading of each leaf node indicates its domain. That is, when two leaf nodes
share a shading it means that the system has determined that the two nodes derive their
values from the same domain. The problem of matching is ambiguous. For example,
considered as a whole, we might say that product in SRC A matches deliveries in SRC
B and sales in SRC C, because all three structures contain the same information. On the
other hand, it might be equally useful to record that product in SRC A matches deliver-
ies/product in SRC B and sales/product in SRC C, because the information at each of
these nodes is the same.

We start by constructing a schema tree for each data source using the parent-child
relationship information that is recorded in the DataSet repository. We then construct a
flow network for each pair of trees. One of the trees is labeled “source tree” and links
inside it are oriented from parent to child. The other tree is labeled “sink tree” and its
links are oriented from child to parent. These links are assigned an infinite flow capac-
ity. A flow capacity of 1.0 is assigned to all those leaf-node to leaf-node pairs whose
similarity exceeds a certain threshold. The Matcher computes the Max-Flow of the flow
network, which indicates, for each node in the sink tree, the cumulative amount of flow
from the source available at that node. Note that the flow at the root of the sink tree al-
ways matches the flow at the root of the source (flow preservation principle).

Similarity of two internal nodes nA and nB is calculated by the following formula:

where MinCut(nA, nB) returns the flow from nA to nB in the flow network, Leaves(nA)
returns number of leaves under nA and Leaves(nB) returns the number of leaves under
nB. The number of leaves under an internal node is calculated in one of two ways, lead-
ing to two similarity metrics. In metric M1, all descendants of an internal node are in-
cluded, while metric M2 includes only descendants that are not repeated. In Fig. 8a, the

product

sales

date

price

sale_id

product_id

label

price

delivery

when

where

?

?

product

sales

date

price

sale_id

product_id

label

price

delivery

when

where

?

?

deliveries

when

where

sales

date

price

sale_id

product

product_id

label

price

?

?

deliveries

when

where

sales

date

price

sale_id

product

product_id

label

price

?

?

sales

date

price

sale_id

delivery

when

where

product

product_id

label

price

?

?

sales

date

price

sale_id

delivery

when

where

product

product_id

label

price

?

?

SRC A SRC B SRC C

? ?? ?

?

?

?

?

Fig. 7 Example of Schema Matching

MinCut nA nB
2

Leaves nA Leaves nB
--

174 Paul Brown et al.

member node in the sink tree has five leaves according to M1, but only four according
to M2 (Fig. 8b), because the award node repeats (i.e., a player may have earned several
awards).

3.5 Discovering Constraints

In addition to computing similarity measures between data sets and more complex
structures, the DBMS also discovers constraints within and between data sets such as
keys, relative keys, correlations, algebraic constraints, and functional dependencies. As
mentioned earlier, the data sets under consideration may come from the same data
source or different data sources. The techniques for finding keys, key-to-foreign-key
constraints, algebraic constraints, and correlations can be adapted from those in Brown
and Haas [3] and Ilyas et al. [6]. In the current setting, the accuracy of some of these
methods, which utilize distinct-value counts based on samples, can be improved: esti-
mated counts based on a complete scan of the data can be derived from the hash-count
data structure. For example, if the size of the domain of a data set (as estimated from
the hash-count data structure) is close to the size of the data set itself (which is comput-
ed exactly), then the data set clearly satisfies a key constraint.

4 Identifying UBOs

Business objects are high-level data structures that reflect the business activity of an en-
terprise. For instance, a company engaged in selling of manufactured goods might care
about business objects such as Customer, Order, Product, and Invoice. Inside each busi-
ness object one may find other objects. For instance, an Order object may contain Prod-
uct objects—products that a Customer ordered in that Order. We call these "nested ob-
jects". Alternatively, an object may contain a foreign key to another object. An Invoice
object, for instance, could contain the ID number of the Order object it pertains to.

Business objects are important because they permit analysis and information inte-
gration at a higher level of abstraction. As we shall see in the next section, higher-level

Fig. 8 Similarity of Internal Nodes according to Metric M1 (a) & M2 (b)

where

when

delivery

deliveries

product

product_id

label

price

sales

sale_id

date

price

price

label

product_id

product

products

sales

sale_id

delivery

when

where

price

date

where

when

delivery

deliveries

product

product_id

label

price

sales

sale_id

date

price

price

label

product_id

product

products

sales

sale_id

delivery

when

where

price

date

Toward Automated Large-Scale Information Integration and Discovery 175

business objects are also useful when interfacing with the user. The schema (definition)
of business objects may be discovered automatically or it may be derived from an en-
terprise data dictionary. In large corporations it is not uncommon to find efforts to
standardize various activities such as purchasing or sales across geographical and other
divisions. An enterprise data dictionary is one of the objectives of such standardization
efforts.

Universal Business Objects (UBOs) are those objects that are common to many data
sources. More precisely, the structure of a UBO can be found in multiple sources. Con-
sider the Customer UBO. Many sources contain customer information—order manage-
ment systems, customer relationship management systems, marketing management
systems, and so on. Customer information is used for different purposes but the basic
structure is the same. Customer has attributes such as name, address, telephone num-
bers, and email address. Each source typically has additional attributes for the Custom-
er. The order management system would probably contain the credit card number of the
customer, while the CRM system would contain flags indicating the preferred contact
method (phone, email, mail) for the customer.

UBOs are identified by computing a degree of sharing (DoS) measure for each
schema structure and selecting the highest-scoring structures as candidate UBOs. DoS
is computed from three inputs: source schemas expressed as leaf-level data elements
and tree-like composite structures (as described in the Dataset repository), similarity of
elementary and composite data structures across and within data sources (as described
in the Similarity repository), and foreign key relationships across and within data sourc-
es. The system uses a number of heuristics to eliminate candidate objects that are un-
likely to be UBOs. For instance, a candidate structure is probably not a UBO if only a
single instance exists or if the structure is too small (e.g., city name) or too large (entire
product catalog).

The UBO discovery process starts by considering each data source to be a single
UBO and iteratively breaking large composite objects into smaller ones. A DoS score
is computed for each object O as the sum of three components: structural sharing, value
relationships, and foreign key relationships.

To compute a structural sharing score, the system looks at the links from O to its
parent and superclasses—the more parents or superclasses O has, the higher the score.
The link from O to its immediate parent(s) has a value of 1.0. Links to the parent's par-
ents have a value of 0.5. Each level of ancestry has a value that is one-half of what the
immediately lower level has. For instance, if O is 3 levels down from the root in a tree
structure, it has a structural sharing score of 1 + 0.5 + 0.25 = 1.75.

Value relationship considers the similarity of O to other objects and uses the struc-
tural sharing value of those other objects to increase the score of O. For instance, if O
is similar to object X (similarity value 0.8) and X has a structural sharing value of 1.5,
then the overall score of O is incremented by 0.8 * 1.5. This is repeated for every object
that O is similar to.

A foreign key relationship means that a specific instance of O (its key field) is ref-
erenced by another object X (its foreign key field). If the foreign key relationship has
strength 0.9 and X has a structural sharing value of 1.75, the system increments the

176 Paul Brown et al.

overall score of O by 0.9 * 1.75. This is repeated for every foreign key relationship that
points to O (its key).

Objects with a sufficiently high DoS score are marked candidate UBOs. Candidate
UBOs are split off from their parent object and a foreign key is inserted into the parent
(1:1 relationship) or into the UBO (1:N relationship). If the relationship between the
parent and UBO is N:M, a separate relationship object is created. Similar UBOs are
merged together, applying the intersection or union semantic.

To illustrate how UBO discovery works, consider the scenario depicted in Fig. 3.
The system analyzes data from four sources (W, X, Y, and Z) and produces a synopsis
for each of the data sets that they contain. The system also produces a synopsis for the
reference data sets (ProdCategory, TIME, LOCATION). Similarities between the data
sets in W, X, Y, and Z and the reference sets are computed at leaf node and internal node
levels. A similarity is discovered between some pairs of data sources: W and LOCA-
TION, X and ProdCategory, Y and TIME, and Z and LOCATION. A similarity is then
calculated between W and Z, because both have some similarity to LOCATION, and it
is determined that W is very similar to Z. Further analysis of the data sets reveals that
both W and X are referenced from Y through a foreign key relationship. Object W has
a high DoS score, because a very similar structure exists in another source (Z), it has
some similarity to a reference data set (LOCATION), and it is referenced by another
source (Y). Object W is merged with Z because the two have very similar structures,
resulting in UBO W' (Customer) which is the intersection of the two objects. Object X
is defined as UBO X' (Product) because it is referenced by Y and has similarity to the
ProdCategory reference data set. UBO Y' (Order) is produced from Y and has a lower
score than the other UBOs, because it only has similarity to one other data set (TIME).

5 Querying

In this section, we describe how a user can perform rich browse and search on our inte-
grated schema and content repository. We first define the search space provided by our
system. Then, we describe in detail how basic keyword search works and the nature of
the returned results. Finally, we show how sophisticated search and analysis (BI) can be
performed on the integrated data in terms of OLAP cubes and real-time dashboards.

5.1 Search Space

Searches in our integrated DBMS are specified in terms of UBOs (and not the underly-
ing base data sets). In general, each UBO encapsulates a set of low-level data from var-
ious data sources. Conceptually, the search space is a graph of UBOs, where each node
corresponds to either an entity UBO or a relationship UBO. Relationships represent
“facts” in BI terminology. Fig. 9 shows an example of a search space. The example
shows a graph with entity UBOs labeled “Product” and “Customer” that are connected
through relationship UBOs labeled “Orders” or “Complaints”. For illustrative purposes,

Toward Automated Large-Scale Information Integration and Discovery 177

we have annotated the graph with UBO fields such as product name, customer key and
order date. The percentages on the relationship links correspond to the “strength” of the
relationship. In our example, 90% of Products relate to Orders and 40% of Products re-
late to Complaints. Similarly, 80% of Customers related to Order and 60% to Com-
plaints. Additionally, the search space contains UBOs (reference UBOs) that corre-
spond to reference data (like UNSPSC for products, Calendar for time, and Location for
addresses).

5.2 Conceptual Keywords: Rich Browse, Search, and Ranking

The most basic form of searching that the system provides is the “conceptual” keyword
based search, where keywords do not correspond to actual words in the underlying base
data sets (as is the situation in typical text search engines) but to labels of entities or re-
lationships between UBOs in the search space. We also assume that we have a syno-
nyms catalog that contains synonyms for various keywords. For example, a synonym
for the keyword “where” is “address”, for “time” is “calendar”, etc.

In order to explain how the conceptual keyword search works, let's assume that the
user specifies the following query:

“product where when”

Using a synonyms catalog, the keywords are mapped to UBOs, as shown in the follow-
ing table:

Fig. 9 Search Space Example

month

Orders

LocationCalendarUNSPSC

Product Customer
day

name

year

day

country

state

city

key

name

...

...

zip code

zip code

category

pid

...

category

family

class

178 Paul Brown et al.

In our example, keyword “Product” matches directly to Product, keyword “where” has
a synonym “street” that matches through Location to Customer, and keyword “when”
has a synonym for “day” that matches through Calendar to Order.

The system returns a query result graph similar to the one depicted in Fig. 3, along
with some samples that are cached internally by our system. The user has the choice of
seeing exactly how entities are related with each other and actual examples of such en-
tities in the underlying data. The search can be refined, if necessary, by further con-
straining the result graph. For example, the user might not be interested in the UNSPSC
categorization and can discard the corresponding part of the graph.

To handle the potentially huge number of subgraphs that match the query, the sys-
tem can rank the matching subgraphs and display only the highest-ranked results. The
ranking uses the similarity metrics that are computed during UBO discovery.

5.3 BI Support and Dashboarding

The metadata returned by the conceptual keyword search can be enhanced and exploit-
ed by the user to perform exploratory cube queries in an easy, intuitive way. Typically,
the reference data sets contain (or can be easily enhanced with) well-known hierarchies
such as time (day, week, month, year) or a standard hierarchical product categorization
such as UNSPSC. The results of the basic keyword search are annotated by the system
with such hierarchies. The user can designate certain attributes as measures (like the
price of product) and certain entities as dimensions (like customer or product) just by
clicking on the result graph. Operations like rollup or drilldown can then be easily per-
formed by simply choosing the appropriate aggregation level in case of the hierarchies
that are presented in the result graph. Because response time is very important for in-
tensive BI applications, the performance for executing such queries must be optimized
using techniques like pre-materializing certain parts of the cube using, for example, the
techniques in [9].

Our system can also be used to support real-time dashboarding. Specifically, the
user (via the intuitive data cube interface) can specify certain aggregations as “real-
time”. The system then monitors the specified aggregated values and triggers appropri-
ate actions when user-defined thresholds are crossed. In many cases, maintaining many
such complex aggregates in real time requires approximation, and the techniques de-
scribed in [10] can be applied. The results of BI reporting, data analysis, and real-time
dashboards are stored using XML and interfaces to office productivity tools such as
spreadsheets.

Keyword UBO

Product Product

Where Location Customer

When Calendar Order

Toward Automated Large-Scale Information Integration and Discovery 179

6 Conclusion

Modern businesses need to integrate thousands of highly heterogeneous information
sources. These information sources are typically not tables of records, but rather collec-
tions of complex business objects such as purchase orders, invoices, and customer com-
plaints. The traditional data warehouse approach of “manual” schema design and ETL
is not feasible anymore, because this methodology does not scale and relies on expen-
sive human resources.

We have outlined an approach to massive automated information integration that
addresses these problems. Our framework exploits the enabling technologies of XML,
web services, caching, and portals. Our approach also incorporates novel methods for
automated similarity analysis that rest on synopsis-construction techniques such as
sampling and hashing, pattern matching via automata, graph-analytic techniques for ob-
ject identification, and automatic discovery of metadata for business objects. Our sys-
tem provides a powerful querying interface that supports a wide variety of information-
retrieval methods, including ad-hoc querying via intuitive keyword-based search, graph
querying based on similarities, automatic report generation, graphical and traditional
OLAP, spreadsheets and other office productivity tools, data mining algorithms, and
dashboards.

Our system is far from complete. Important ongoing research issues include further
improvement and empirical evaluation of data set signatures and similarity measures,
scalability and deployment studies, more sophisticated methods for business object dis-
covery, exploitation of ontologies, and incorporation of new query processing para-
digms. The system must be able to exploit not only open standards such as XML, but
also deal with domain-specific standards such as XBRL for financial solutions. In the
long run, our system can potentially lead to an enormous enhancement of business pro-
ductivity by providing users with a rich querying environment over information not
only within the enterprise, but in the entire supply chain and beyond.

Acknowledgements

We thank Michalis Petropoulos for implementing the “Matcher” component in our pro-
totype system, and Kai-Oliver Ketzer for implementing the incremental synopsis man-
agement.

References

[1] Angluin, D.: On the Complexity of Minimum Inference of Regular Sets, Information and
Control, December 1978, 39(3), pp. 337-350

[2] Astrahan, M., Schkolnick, M., Whang, K-Y.: Approximating the Number of Unique Val-
ues of an Attribute without Sorting, Information Systems, 12(1), 11-15, 1987

180 Paul Brown et al.

[3] Brown, P. G., Haas, P. J.: BHUNT: Automatic Discovery of Fuzzy Algebraic Constraints
in Relational Data. Proc. 29th VLDB, pp. 668-679, 2003

[4] Carrasco, R. C., Oncina, J.: Learning Stochastic Regular Grammars by Means of a State
Merging Method, Grammatical Inference and Applications, Second International Collo-
quium (ICGI), 1994, pp. 139-152

[5] Gibbons, P. B., Matias, Y.: New Sampling-Based Summary Statistics for Improving Ap-
proximate Query Answers. Proc. SIGMOD'98, pp. 331-342

[6] Ilyas, I., Markl, V., Haas, P. J., Brown, P. G., Aboulnaga, A.: CORDS: Automatic Discov-
ery of Correlations and Soft Functional Dependencies. Proc. SIGMOD'04, pp. 647-658

[7] Poosala, V., Ioannidis, Y. E., Haas, P. J., Shekita, E. J.: Improved Histograms for Selectiv-
ity Estimation of Range Predicates. Proc. SIGMOD'96, pp. 294-305

[8] Pitt, L.: Inductive Inference, DFAs and Computational Complexity. 2nd Int. Workshop on
Analogical and Inductive Inference (AII), 1989, pp. 18-44

[9] Sismanis, Y., Roussopoulos, N.: The Polynomial Complexity of Fully Materialized Coa-
lesced Cubes. Proc. VLDB'04, pp. 540-551

[10] Sismanis, Y., Roussoupoulos, N.: Maintaining Implicated Statistics in Constrained Envi-
ronments. Proc. ICDE'05

[11] Teradata Corporation: Getting it Together. Data Warehousing Report, 5(4), August, 2003.
Online at: http://www.teradata.com

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 181-200, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Component-Based Applicat ion

Architecture for Enterprise

Information Systems

Erich Ortner

Technische Universität Darmstadt, Germany
ortner@winf.tu-darmstadt.de

Abstract. The paradigm of reuse is a traditional concept of surviving for hu-
manity that manifests itself in human languages. The words (components)
will be taken out of a lexicon (repository) and then combined to sentences
(applications) according to the rules of a specific syntax (grammar). The pa-
per points out the parallels between the component-based approach of human
languages on the one hand and component-based application-system design
in the software-engineering discipline on the other hand. We describe some
instruments (e.g., repositories, part lists) for managing component-based sys-
tem design, and introduce a language-critical middleware framework sup-
porting the development and processing of component-oriented e-commerce
applications (e.g., an electronic marketplace for trading software compo-
nents). Furthermore, we present a classification of component types and a
component specification framework. The existence of standards and ex-
change forums (e.g., market places) is — besides a sophisticated component-
and configuration theory — a substantial prerequisite for superior compo-
nent-based application development and system life-cycle management.

1 Introduction

The idea of component-based development of application systems was first introduced
into the debate about a construction tenet for database applications in [22]. Before that
it was discussed as a possible approach to software engineering from an economic point
of view in 1968 by McIlroy [6].

Only when large software vendors such as Microsoft, Sun Microsystems, IBM,
SAP, Oracle started to change their products into component-based solutions was com-
ponent orientation taken seriously in computer and information science. From a theo-
retical point of view, the term “software component” is not yet considered a technical
term in computer and information science, when, for example, compared with the term
“machine element” in mechanical engineering.

182 Erich Ortner

The component paradigm in language-based computer and information science
[10] can—compared with natural languages used by human beings—in general be de-
scribed as follows:

The components (words) are retrieved from a repository (lexicon) and are then
put together as applications (sentences) in accordance with a syntax (grammar) to
achieve a particular goal, for example, to accomplish a task.

Example 1: Human languages
In order to air a room, one person X says to another person Y:

“Y, could you please open this window?”
Example 2: Application systems development
For organizing a sales information system, the following (software) components are
connected in mutual functional dependence:

Together, a program for maintaining customer data, one for maintaining orders,
and a billing program combined with accounts receivable, accomplish the tasks
of a sales information system within an enterprise.

Based on a grammar you can create almost any number of new sentences by reusing
words (components), which can thus express new associations of ideas (ways of carry-
ing out tasks). Linguists and paleoanthropologists even think that along with the con-
tinued evolution of grammar in human languages (so called “natural languages”), cre-
ative power and imagination (creativity) in human beings developed accordingly. The
linguist Derek Bickerton expressed this view in an interview [1] as follows: “If, for ex-
ample, you look at barbs, be it barbs for harpoons or else for darts...—Believe me: there
is a great deal of grammar in the development of the barb”. And the physicist Albert
Einstein (1879-1955) when asked about thinking and language is believed to have said:
“A thought occurs to me, and then I have difficulties in expressing it.”

Fulfilling the component paradigm in application system development requires a
variety of unambiguous definitions. We need to systematically build component cata-
logs, clearly define the functional scope of (software) components and reconstruct a “ra-
tional grammar” [5] in order to connect components with natural language systems, and
we need to establish quality standards for components and systems worldwide, to be
able to communicate in a digitalized world (interactions via cyberspace). Only when all
this has been achieved, we can really speak of a construction tenet for application sys-
tems. Looking at it in an integrated way, such a tenet always consists of linguistic com-
ponents (for example, knowledge and software) and non-linguistic components (phys-
ical things and occurrences). It is becoming more and more important (because of ubi-
quitous computer aid, e.g., [18]), to partly redefine the science of engineering—
including its youngest child, computer science—from the point of view of language the-
ory and (constructive) logic [3].

Regardless of the discipline: mechanical engineering, electrical engineering, civil
engineering or computer science [23], when construction processes are to be computer-
aided, “construction” is always considered a kind of “text modification” (from the spec-
ification of requirements to construction plans) based on language theory (e.g., gram-
mar) and constructive logic.

Component-Based Application Architecture 183

2 Components

In computer science, components are more correctly called software components. They
are parts of a program (Fig. 1), which provide specialized services from the domains
(domain components) or generalized services, for example, services that offer data
management (system components) in information processing contexts. They corre-
spond to subject words (nominators and predicators) in the natural languages of their
users, which are generally called object languages, as well as in the language used by
software developers, often called meta languages. For example, a component “customer
maintenance” offers specialized services for use in the business (commercial) applica-
tion systems such as storing addresses, credit classification, interest profiles, etc.

Looking at software components it is important to distinguish between their physi-
cal representation, the source code (Fig. 1), and their description. The description may
be intended for implementing and operating the component on a computer, or, for ex-
ample in the case of interactive applications, for the user to understand the component
(human symbol manipulation).

As computer science is almost exclusively concerned with languages and language
artefacts [10] in the field of construction, the above-mentioned concept of component
orientation in human languages, which has matured over thousands of years, applies al-
most unchanged. Shaw and Garlan have, for example, presented a component model
(Fig. 2) in their works on the architecture of application systems [16] that is based main-
ly on components and connectors, just as human languages (natural languages) do. In
human languages “subject words”, (e.g., “customer” or “bill”), are available to describe
components, and “particles” or “many-place predicators”, (e.g., “is”, “on”, but also
“buy”, “send”, etc.) to describe connectors.

A component’s services are made available to the outside world via an interface
(binding in Fig. 2) that ensures its correct invocation, (i.e., the permitted use of the com-
ponent). This way, the realization of individual services (that is the implementation of

Fig. 1 Source Code and Functional Scope of a Component

Domain-Specific

Logical

Physical

Domain

Computer System

Description

Source Code

(Human symbol
manipulation)

(Mechanical symbol
manipulation)

(Compilable or
executable
information carrier)

184 Erich Ortner

the component) can be hidden from the outside world to a large extent (information hid-
ing). This means that the component can be used by solely knowing the interface, that
is in accordance with the so-called “black box principle”. This makes system mainte-
nance and applying corrections (exchanging a component, adding a new component, re-
moving a component) much easier.

A connector (Fig. 2), which can be a component itself, has on its own side the in-
terface “role” and on the communication and interaction partner’s side the interface
“port”. Because of the reciprocal calling of services, the components take on a different
role in the communication each time, which is supported by the “protocol” (for exam-
ple, as a connector). For example, the component “customer maintenance” plays the
role “party making request” towards a (connector) component “order maintenance”,
while the component “article maintenance” takes on the role “party making offer” to-
wards the (connector) component.

In addition to establishing a clear component model (Fig. 2), various ways of clas-
sifying components must be considered. This is important for creating a classification
system, for example, to aid searching in catalogs. In some classification models (Fig. 3),
the distinction between components and connectors is abandoned and “component” is
used as a general term.

Components can firstly [19] be classified into simple (but ready) components and
complex components. Simple components are then further classified into system com-
ponents (which implement generic functions) and domain components (which fulfil ap-
plication-specific functions) as shown in Fig. 3.

Configuration

Binding

Port

Role

Connector

Com-

ponent

A

B

: Connection / Dependence

: Transfer / Equivalence

Com-

ponent

Fig. 2 The Component Model by Shaw and Garlan

Component-Based Application Architecture 185

The group of complex components distinguishes between components, which can be
“modified” (be adapted or expanded by adding further components), and ready complex
components. Adaptable complex components are called “component system frame-
works” in the context of implementing generic functions (such as data maintenance,
process control or communication support). In the context of implementing application-
specific functions (such as enterprise resource planning, supply chain management, or
customer relationship management), they are called “component application frame-
works”.

Last but not least, complex system and domain components in Fig. 3 are called “as-
sembly groups”. Beside assembly groups, there are applications. They form larger units
in this classification, and can be used separately or in combination with other applica-
tions or components to form even larger application systems.

For the development of a component market as well as for trade in (software) com-
ponents, a standardized description of these components is of vital importance. [14]
suggests such a specification framework, as shown in Fig. 4 in a simplified way. The
specification framework aims at describing a component's exterior view as completely
as possible, to be able to evaluate the component's usability in application development
merely by reading its description (cf. Fig. 1).

The seven aspects of the specification framework for components can be assigned
to the topics “administration” (technical and economic), “conception” (domain-specif-
ic) and “specification” (logical) to give them further structure. You can picture the
physical representation (e.g., the source code) of a component as appended to its “inter-
face” (Fig. 4).

Domain

Compo-

nent

Component

System

Framework

Component

Application

Framework

Assembly Application

System

Compo-

nent

ReadyAdaptable

ComplexSimple

: Criterion : Component Type

Component

Fig. 3 Component Types

186 Erich Ortner

Measured by the standard directory service UDDI (Universal Description, Discov-
ery and Integration) for Web services and components that is currently being devel-
oped, the subject field “administration” can be compared with the so-called “white pag-
es” and “yellow pages” (which contain information about businesses and addresses).
The field (logical) “specification” can be associated with the “green pages” (which con-
tain information concerning “mechanical symbol manipulation”). Whereas for the field
“conception”, which documents the domain semantics (contents, application domain)
of a component, the above directory service (UDDI) ought to be extended by, for ex-
ample, a category “blue pages” (which contain information concerning “human symbol
manipulation”).

3 Tools

Fig. 5 presents the new distribution approach for software and knowledge companies
on the vendor side, user companies and private users on the customer side, as well as
consulting firms/companies who support customers in the implementation of individual
solutions in the component market on the interaction side.

Marketing

Performance

Task

Terminology

Coordination

S
p

e
c
if
ic

a
ti
o
n

C
o

n
c
e

p
ti
o

n
A

d
m

in
is

tr
a
ti
o
n

C
o

m
p

o
n

e
n

t

Behavior

Interface

General information, domain function,

quality marks

Performance parameters, confidence

and security measures

Tasks or parts of tasks of the component

Terminology specification

Dependencies between the services of a

component or between two components

Pre and post conditions, invariants

Signature and interface information

Fig. 4 Specification Framework for Software Components

Component-Based Application Architecture 187

A software vendor offers software products that can be flexibly customized (tai-
lored) to the individual situation of a customer and his goals. This can be done using so-
called framework solutions and/or by configuring application systems from compo-
nents. To be able to do this, the software product, which is imaginary when it is on offer,
must consist of components that are available for use in the user’s optimized work rou-
tines/processes. These components can either be bought on the component market or
self-built and must be available in a large number of variants, which are maintained in
repositories (catalogs) for easy access. The actual composition (and installation) of the
software solution sold is done individually at the customer site after the contract has
been signed, possibly with the help of a consultant. Simulation may be used as a means
to find the optimum solution.

To handle the paradigm shift in the fields of software and knowledge that is due to
component orientation, there are further tools, such as organizing trade in software and
knowledge components in electronic market places, or developing comprehensive re-
pository structures for the life-cycle management of component-based application sys-
tems on the part of the vendor and at the customer's site.

In the process of building up such repositories, it is important to ensure the constant
description of the components through all life-cycle phases, from the specification of
requirements, through their design and configuration, through operation to removal or
replacement by other systems.

Fig. 5 Marketing of Component-based Application Software

188 Erich Ortner

For integration reasons, it is additionally necessary to describe in a repository [13]
the development languages that are used as well as the components and application sys-
tems developed with these languages. Fig. 6 shows the meta schema (documentation
structure) of such a universal repository in a simplified way.

A company's reconstructed expert language (normative expert language) that is
maintained in a repository consists of the components “(normative) grammar” (sen-
tence patterns) and “(normative) lexicon” (words). The rules according to which the
words can be combined into sentences are laid down in a grammar. One way of formu-
lating these rules is sentence patterns. With the help of structure words such as “a”,
“and”, “or”, etc. and blanks for subject words such as “customer”, “Smith” or “hire”, a
sentence pattern defines in a general and schematic way the structure propositions can
have in a reconstructed expert language.

The subject words, also called terms, are divided into the disjoint subsets’ predica-
tors (e.g., generic names, verbs, and adjectives) and nominators (proper names and des-
ignations). The content of the (domain) propositions, which are made during the devel-
opment phase method-neutral expert design for identifying the expert knowledge (do-
main knowledge) relevant for development is also determined by the subject words that
are maintained in the lexicon.

Each proposition—we distinguish singular propositions about single things or in-
dividuals and general propositions, which express combinations of concepts—fulfils
exactly one sentence pattern. On the other side, many propositions can be built in ac-
cordance with the same sentence pattern.

In a catalog (Fig. 6), connector components (e.g., Session Beans) and object com-
ponents (e.g., Entity Beans) are described under the common designation component.
They can, still documented in the catalog, be grouped into assembly groups (configu-
ration), according to the component model by Shaw and Garlan.

In the application system-part of the repository, object components, connector com-
ponents and configuration components (assembly groups) form the components used
from which applications are configured.

Using the meta object type documentation object, all (domain) propositions rele-
vant for an object in the catalog or in the application system-part of a repository's meta
schema, can be assigned easily. This may be relevant for gaining information, securing
consistency or for maintenance purposes.

A repository or a catalog is also an important part of an electronic market place for
global trade in software components (Fig. 7) on the Internet. CompoNex [9]—Compo-
nent Exchange—has originally been designed for the B2B (Business-to-Business) field
and supports the emergence of a world-wide component market, which analysts expect
to grow considerably. CompoNex can be integrated directly into other development en-
vironments (e.g., Microsoft Visual Studio .NET) and thus provides better support for
the development and life-cycle management processes of component-based application
systems in an organisation it is based on.

Software components require a great deal of explanation, as they are not commod-
ities. Therefore, their implementation provides several special services to support mar-

Component-Based Application Architecture 189

D
O

C
U

M
E

N
T
A

-

T
IO

N
O

B
J
E

C
T

P
R

O
P

O
S

IT
IO

N

P
R

O
P

O
S

IT
IO

N

A
B

O
U

T
T

H
E

D
O

C
U

M
E

N
-

T
A

T
IO

N
O

B
J
E

C
T

G
E

N
E

R
A

L

P
R

O
P

O
-

S
IT

IO
N

S
IN

G
U

L
A

R

P
R

O
P

O
-

S
IT

IO
N

U
S

E
O

F

S
U

B
J
E

C
T

W
O

R
D

S

S
E

N
T

E
N

C
E

P
A

T
T

E
R

N

S
U

B
J
E

C
T

W
O

R
D

S
T

R
U

C
T

U
R

E

W
O

R
D

P
R

E
D

IC
A

T
O

R
N

O
M

IN
A

T
O

R

W
O

R
D

U
S

A
G

E
O

F

S
T

R
U

C
T

U
R

E

W
O

R
D

S

N
O

R
M

A
T

IV
E

E
X

P
E

R
T

L
A

N
G

U
A

G
E

A
P

P
L

IC
A

T
IO

N

S
Y

S
T

E
M

S

C
A

T
A

L
O

G

M
E

T
H

O
D

-N
E

U
T

R
A

L

E
X

P
E

R
T

D
E

S
IG

N

A
P

P
L

IC
A

T
IO

N

C
O

N
N

E
C

T
IO

N

R
O

L
E

P
O

R
T

R
O

L
E

C
O

M
P

O
N

E
N

T

U
S

E
D

C
O

N
F

IG
U

-

R
A

T
IO

N

C
O

N
N

E
C

-

T
IO

N
C

O
M

P
O

N
E

N
T

C
O

N
N

E
C

T
O

R

C
O

M
P

O
N

E
N

T

O
B

J
E

C
T

C
O

M
P

O
N

E
N

T

P
O

R
T

Fi
g.

 6
 M

et
a

Sc
he

m
a

of
 a

 D
ev

el
op

m
en

t R
ep

os
ito

ry
 fo

r C
om

po
ne

nt
-b

as
ed

 A
pp

lic
at

io
n

So
lu

tio
ns

190 Erich Ortner

keting. These are mainly the components “catalog”, “search” and “Publish/Subscribe”
(Fig. 7).

At the moment, the market place does not provide an interface for human users [8];
instead it provides a machine-readable interface in the form of an XML Web service. A
variety of user interfaces are based on this service, thus making access more convenient
for human users. Performing a trade transaction (payment and downloading of a com-
ponent) has been implemented in a component-oriented way using a workflow manage-
ment system.

4 Construction Methodology

Considered in a general way, parts lists describe how (physical) goods are composed of
parts and complex components [17]. If we apply this to software components [7], that
is to pieces of text or language artifacts, then parts lists represent the grammar of a lan-
guage system.

Fig. 7 Electronic Market Place for Trade in
Software- and Knowledge Components

Component-Based Application Architecture 191

From a point of view of logic and mathematics, parts lists are an application of mer-
eology (part/whole theory) in the field of composing items of any sort from parts [15].
[20] even describes a symbolism (Tab. 1) based on mereology and an algorithm for re-
solving general variant parts lists.
In [10] it is attempted to demonstrate that variant parts lists can be used also to configure
individual software solutions made of components with a large number of variants, that
is as a kind of configuration grammar.

Fig. 8 shows how a configuration grammar is used (in the way of a procedure using
variant parts lists) for component-based development of a software solution to manage
the annual balance sheet of a company.

The software is composed of the components “profit and loss account” and “bal-
ance account”. Additionally, a diagrammatic representation of the calculated results,
e.g., in the form of bar charts, can be included in the solution as another component.
Configuration grammar (Fig. 8) provides the empty node to account for the fact that it
is an optional configuration decision. The “balance account” can be included in the an-
nual balance sheet in a component-based way either as “trade balance account” (Variant
1), or as “tax balance sheet” (Variant 2).

Using variant parts lists makes administration of a configuration process of soft-
ware systems from software components flexible (grammar). Before that lies a devel-
oper’s construction effort that produced nothing less than an expert design [12] of the
application solution. To be able to “process” (e.g., combine) software components in
variant parts lists, it is necessary to describe components in a suitable way (e.g., in a re-
pository) as shown in Fig. 6. Only then can developers be requested to make the com-
parative effort necessary in the decision making process. A component model based on
mereology (Fig. 2), architectural standards (e.g., Fig. 10, Tab. 2, Fig. 11) and the spec-

Tab. 1 Node Types for the Representation of a Variant Parts List

Node Type Meaning Symbol

Part Node Represents a part. Parts can be components or com-
ponents that were put together into a new unit. The
number at the connecting line indicates how many
times the part is included in the superior structure.

Conjunctive
Node

Combines all parts into new unit via connecting
lines (corresponds to the logical And).

Alternative
Node

Exactly one of the incoming connecting lines is
chosen (corresponds to the logical exclusive Or).
The selected part de facto replaces the alternative
node.

Empty Node Is needed to model the optimum selection when
using an alternative node.

192 Erich Ortner

ification frame (shown in Fig. 4) together form the ideal prerequisites. They open up an
entirely new way of using software components, as shown, for example, in Fig. 9.

When developing application systems from components in accordance with the
“multipath process model” [12], a main process—the configuration process—and a sec-
ondary process—the selection process (Fig. 9)—are distinguished during the configu-
ration phase (part of the process). Here it becomes obvious that developers who do not
work in a professional way and like to tinker will be confronted with the so-called “hare
and tortoise barrier”, with respect to the change between configuration and the choice
of components. The cleverer tortoise wins the race against the quicker hare by means of
“reuse”. Stubborn, prejudiced developers prefer to program each component they need
for a software solution themselves, or reprogram somebody else's component according
to their own ideas. Systems that were developed in this way can practically not be main-
tained, are usually badly documented and are understood, if at all, only by the authors
themselves.

Every selection process requires a selection effort on the part of the developer
(Fig. 9). Not everyone finds that easy. In other fields of engineering, the selection deci-
sion is aided by clear calculation results, security grades, etc. of the relevant field, e.g.,
in civil engineering. In the field of software engineering, such selection aids are still
scarce. On the configuration side, after putting the application together, the integration
effort must be implemented on a technical, constructive, and linguistic level, for exam-
ple, with respect to the entire architecture of the application system for an enterprise
(compare Fig. 11).

Construction Stage 3

Construction Stage 2

Construction Stage 1
Tax

Balance

Sheet

Balance

Account

Diagrammatic

Represen-

tation

Annual

Balance

Sheet

Profit

and

Lost

Account

Trade

Balance

Account

Bar Chart

Represen-

tation

1 1 1 1

111

Fig. 8 Variant Parts List for the Annual Balance Sheet of a Company

Component-Based Application Architecture 193

5 Application Systems Architecture

Architecture of large applications systems today is, beside being component-based,
characterized by distinguishing abstraction levels and/or language levels (Fig. 10), and
by distinguishing generic and specific functions of the components within the overall
system (Tab. 2).

If cyberspace, for example, is considered a world-wide, huge address space, which
is being created again and again through a network of stationary and mobile computers
(when they start operating), the issue of giving the area a clear structure for its popula-
tion with software and knowledge is raised. In addition to the concept of abstraction lev-
els (e.g., database systems [2]), a useful instrument to provide such a structure is the dis-
tinction between language levels, which comprise a language change in the sense of ob-
ject/meta language [13], and language areas, which refer to a specific domain (e.g., to
an expert language such as that of merchant's accounts).

In this way, applications that have been developed on an object language level for
example, can be described on a meta-language level (repositories). Alternatively, single
applications of a specific domain (e.g., accountancy [21]) are integrated in the common
language area (Fig. 10) they are assigned to.

In the context of computer-based information systems, drawing the distinction be-
tween generic and specific leads to a classification of software into basic systems and
(basic system) applications. Basic systems implement generic functions such as “(data)
management”, “reasoning”, or “controlling” of processes. In addition, there are (basic
system) applications, which must be developed or bought and implemented as a stand-
ard application when purchasing a basic system (e.g., a database management system)
for specific uses in a company (for example production). Thus, specific application sys-

Fig. 9 Part of a Process Model for Developing Application Systems from Components

194 Erich Ortner

tem solutions always require the employment of basic systems (database management
systems, workflow management systems, repository systems).

This type of software has been combined into a middleware framework in [9],
named “E-NOgS” (Electronic New Organon {Server, Service, Servant}). A specific ap-
plication system solution can be developed based on this framework. It is component-
based and can therefore be used flexibly, i.e., component by component, in the devel-
opment of basic system applications.

The “proof of concepts” for E-NOgS has so far been given with respect to its im-
plementability, especially in the field of e-commerce applications, e.g., the implemen-
tation of an electronic market place [9] for world-wide trade in software components.

It is remarkable that E-NOgS made a continuous language-critical foundation not
only of applications [11] but also of basic systems possible for the first time. Tab. 2
shows the result of this foundation.

Based on the concept of schema and instances or language action (that bring about
the creation of instances on the basis of schemas) respectively, and the concept of cre-
ating language levels and language areas, generic language actions (types of language
actions) were reconstructed from the concrete use of languages in speech communities
or companies. Generic language actions that do not yet have a reference to a specific
application, lead to the so-called basic systems (system type in Tab. 2) in language-
based computer and information science. In a company, they can only be used after the
applications (specific types of language action or language operation types) for it have
been developed. The specific computer-based language action “customer mainte-
nance”, for example, forms the database application that belongs to the generic compu-
ter-based language action “data management” using a database management system.

Tab. 2 shows the fields of application for the various generic functions and makes
suggestions for development as to which logic might form the basis for the specification
of the relevant solutions (basic systems and applications).

Fig. 10 Language Levels and Language Areas (in Cyberspace)

Component-Based Application Architecture 195

T
ab

. 2
 F

un
da

m
en

ta
ls

 o
f L

an
gu

ag
e-

lo
gi

ca
lly

 a
nd

 L
an

gu
ag

e-
cr

iti
ca

lly
 R

ec
on

st
ru

ct
ed

 B
as

ic
 S

ys
te

m
s (

ge
ne

ric
 fu

nc
tio

ns
)

196 Erich Ortner

Using the above characterized structural means (component orientation, language
levels, basic systems and applications, etc.) there are two approaches today with respect
to application architectures:

1. Customizing systems using ready architectures
2. Configuring application systems from components by distinguishing language

levels as well as generic and specific functions.

ad 1.: “San Francisco” (Fig. 11) is a framework for complex application systems
whose development in 1996 first began using C++ and was continued later using Java.
It is a proprietary IBM product. However, SAP and ORACLE are two well-known com-
panies among the vendors of such systems.

The framework serves developers as orientation for complying with (generic and
specific) standards and, on the other hand, it provides a frame, a preliminary product or
“semi-finished product”, for the customer-specific installation of applications (add-
ons). From a programming point of view, development of San Francisco is based on the
EJB (Enterprise Java Beans)-technology—Java 2 Enterprise Edition (J2EE).

With Common Business Objects—they can be basic systems such as database man-
agement systems or workflow management systems—San Francisco uses the basic
classes of Foundation & Utility-Layer (which can be compared with the CORBA serv-
ices).

The superior level (Fig. 11) consists of the so-called core business processes, which
implement the basic business processes and the necessary modules. Finally, this archi-
tecture is completed by the developments of customers themselves or by purchased cus-
tomizable application software of other vendors.

With this kind of construction of application systems, you buy only the general
framework, which you must then tailor. The term “customizing” was introduced to de-
scribe this. Customized application systems have the great advantage that large parts of

Fig. 11 The San Francisco Framework

Component-Based Application Architecture 197

the operations (for data processing) do not have to be programmed anew. Nevertheless,
it remains necessary to specify definite descriptions, particularly for data. A special
kind of definite description takes place, namely a customizing definite description, e.g.,
the object that is usually called “member” may be named “associate” in a company.

ad 2.: An entirely different kind of construction of complex application systems is
configuring applications from components. Here, the decision is not to adapt, or tailor
(customize), semi-finished products or preliminary products, because a sufficiently
large number of variants of the individual components is available for the configuration.
This means that there is absolutely no danger of customizing individual applications
and no cost is incurred for version maintenance of the various implementations at the
customer's site. If you compare the configuration of applications systems from compo-
nents, which are available in large numbers of variants (and thus do not need to be cus-
tomized) with component orientation in other fields of engineering (e.g., mechanical
engineering), it is by far the more professional approach to this task. Only in times of
hardship and war are components adapted when reusing components, because the right
variant is not available.

Fig. 12 shows a distributed, complex application system, which was developed en-
tirely in accordance with the idea of configuring application systems from components
by choosing variants and not by adaptation (versioning). Specification of the basic sys-
tems was done using the CORBA (Common Object Request Broker Architecture) mid-
dleware architecture.

CORBA is the description of a distributed system for object maintenance, which
was specified by the Object Management Group (OMG). It determines how distributed
objects (e.g., applications) can communicate with each other via an Object Request
Broker (ORB). In addition to ORB, the OMA (Object Management Architecture) in-
cludes four more areas (Fig. 12): CORBA Services, CORBA Facilities, Domain Inter-
faces and Application Objects.

The CORBA Services are a collection of fundamental basic services, which in gen-
eral can also be provided by a (distributed) operating system. The CORBA Facilities
provide even more functionality per component and comprise distributed basic systems
such as database management systems, workflow management systems or reasoning
management systems. Meta-data maintenance (the repository system) is a special COR-
BA facility or component. It can be used to describe all components of the architecture
(application objects or (single) applications also), to control their life-cycle and to en-
sure their language integration via the terminology of the company relevant for the ap-
plication.

Using CORBA, you can now include each application component in merchant's ac-
counts (Fig. 12) or replace the application components by other variants that are com-
patible with the interface, until an individual solution for the customer is found. The ar-
chitecture is completed by the component-based operational and organizational struc-
ture of the company (customer) and its hardware infrastructure (devices, networks, etc.)

198 Erich Ortner

6 Future Perspectives

Fig. 13 summarizes the future strategy for reusing software or the application software
vendors' marketing policies.

One of the main differences between software and physical products is that soft-
ware can be changed so easily (v. Neumann-Rechner). This may sometimes encourage
developers to modify the static program code of a software component when they are

Fig. 12 Component-based Architecture of Merchant's Accounts
in a Company

Component-Based Application Architecture 199

reusing it and this seems to be a quick way to satisfy a customer’s special requirements.
Therefore, framework-oriented development of application systems—to which the so-
called reference-model-oriented or model-driven development of application systems
mainly belongs [4]—will still be on the market for quite some time, in spite of its cus-
tomizing of individual solutions and time-consuming versioning (Fig. 13).

Considering carefully the advantages and disadvantages, over the medium term the
variant-oriented, component-based development of application systems (Fig. 13, right
column) seems the more professional choice. This paper shows that in the meantime
(compared with the state-of-art in [22]) great progress has been made in the variant-ori-
ented approach also from a theoretical, methodological and conceptional point of view.
The marketing and distribution strategists in software companies such as IBM, SAP,
ORACLE or Microsoft seem not to be sufficiently aware of this.

References

[1] Bickerton, D.: Was ist “Was”? in: DER SPIEGEL, Nr. 43, 2002, pp. 223-228.
[2] Härder, Th., Rahm, E.: Datenbanksysteme – Konzepte und Techniken der Implemen-

tierung, Springer Verlag, Berlin/Heidelberg 1999.
[3] Herrig, D.: Gibt es eine Konstruktionsalgebra? in: Wissenschaftliche Zeitschrift der Päda-

gogischen Hochschule Dr. T. Neubauer, Erfurt/Mühlhausen 1978, pp. 1-11.
[4] Kühne, Th.: Automatisierte Softwareentwicklung mit Modellcompilern, in: Wörner, J.-D.

(Hrsg.), Vom Wort zum Bauelement, thema FORSCHUNG, Heft 1, 2003, Technische
Universität Darmstadt, Monsheim 2003, pp. 116-122.

[5] Lorenzen, P.: Lehrbuch der konstruktiven Wissenschaftstheorie, B.I. Wissenschaftsver-
lag, Mannheim/Wien/Zürich 1987.

[6] McIlroy, M.D.: Mass Produced Software Components, in: Naur, P., Randell, B. (Hrsg.),
Software Engineering: Report on a Conference by the NATO Scientific Affairs Division,
Brussels 1968, pp. 138-150.

[7] Ortner, E., Lang, K.-P., Kalkmann, J.: Anwendungssystementwicklung mit Komponenten,
in: Information Management & Consulting, 14 (1999) 2, pp. 35-45.

[8] Ortner, E., Overhage, S.: CompoNex: Ein elektronischer Marktplatz für den Handel mit
Software-Komponenten über das Internet, in: Wörner, J.-D. (Hrsg.), Vom Wort zum Bau-
element, thema FORSCHUNG, Heft 1, 2003, Technische Universität Darmstadt, Monshe-
im 2003, pp. 28-32.

Fig. 13 Strategies for Reuse

Adaption Selection

Customizing

Version Variant

Standard SoftwareSystem

Component

200 Erich Ortner

[9] Ortner, E., Overhage, S.: E-NOgS: Ein komponentenorientiertes Middleware-Framework
für E-Commerce-Anwendungen, in: Wörner, J.-D. (Hrsg.), Vom Wort zum Bauelement,
thema FORSCHUNG, Heft 1, 2003, Technische Universität Darmstadt, Monsheim 2003,
p. 22-27.

[10] Ortner, E.: Sprachbasierte Informatik – Wie man mit Wörtern die Cyber-Welt bewegt, Ea-
gle-Verlag, Leipzig 2005.

[11] Ortner, E.: Aspekte einer Konstruktionssprache für den Datenbankentwurf, S. Toeche-
Mittler Verlag, Darmstadt 1983.

[12] Ortner, E.: Ein Multipfad-Vorgehensmodell für die Entwicklung von Informationssyste-
men – dargestellt am Beispiel von Workflow-Management-Anwendungen, in: Wirt-
schaftsinformatik, 40 (1998) 4, pp. 329-337.

[13] Ortner, E.: Repository Systems, Teil 1: Mehrstufigkeit und Entwicklungsumgebung, Teil
2: Aufbau und Betrieb eines Entwicklungsrepositoriums, in: Informatik-Spektrum, 22
(1999) 4, S. 235-251 u. 22 (1999) 5, pp. 351-363.

[14] Overhage, S.: Die Spezifikation – kritischer Erfolgsfaktor der Komponentenorientierung,
in: Turowski, K. (Hrsg.): Tagungsband des 4. Workshops Komponentenorientierte betrie-
bliche Anwendungssysteme, Augsburg 2002, pp. 1-17.

[15] Ridder, L.: Mereologie – Ein Beitrag zur Ontologie und Erkenntnistheorie, Vittorio Klos-
termann GmbH, Frankfurt am Main 2002.

[16] Shaw, M., Garlan, D.: Software Architecture—Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, New Jersey 1996.

[17] Schneeweiß, C.: Einführung in die Produktionswirtschaft, 7. Auflage, Springer Verlag,
Berlin 1999.

[18] Spur, G., Krause, F.-L.: Das virtuelle Produkt, Management der CAD-Technik, Carl Hans-
er Verlag, München/Wien 1997.

[19] Turowski, K. (Hrsg.): Vereinheitlichte Spezifikation von Fachkom-ponenten, Memoran-
dum des Arbeitskreises 5.10.3, Komponentenorientierte betriebliche Anwendungssys-
teme, Selbstverlag, Augsburg 2002.

[20] Wedekind, H.: Müller, Th.: Stücklistenorganisation bei einer großen Variantenzahl, in:
Angewandte Informatik, 23 (1981) 9, pp. 377-383.

[21] Wedekind, H., Ortner, E.: Aufbau einer Datenbank für die Kostenrechnung, in: Die Be-
triebswirtschaft, 37 (1977) 5, pp. 533-542.

[22] Wedekind, H., Ortner, E.: Systematisches Konstruieren von Datenbankanwendungen –
Zur Methodologie der Angewandten Informatik, Carl Hanser Verlag, München/Wien
1980.

[23] Wörner, J.-D. (Hrsg.): Vom Wort zum Bauelement, Komponententechnologien in den Ing-
enieurwissenschaften, thema FORSCHUNG, Heft 1, 2003, Technische Universität Darm-
stadt, Monsheim 2003.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 201-213, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Processes , Workflows,

Web Service Flows:

 A Reconstruction

Stefan Jablonski

Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
stefan.jablonski@informatik.uni-erlangen.de

Abstract. The last decade was heavily focusing on process-oriented ap-
proaches for application integration. It started with the advent of workflow
management technology at the beginning of the nineties. This development
has been continued with the definition of flow concepts for Web services. In
this article, we discuss the purpose and advantages of process-oriented con-
cepts for application integration. Therefore, workflow technology and Web
service flows are briefly introduced. Then we assess both technologies with
respect to their role in application integration. Especially, we will reconstruct
the fundamental differences between workflows and Web services.

1 Application Integration

Today’s business is infinitely more complex than it was a long time ago. Each company
has running a large number of major applications that implement the business functions.
At separate points in time, various people used different technologies to write those ap-
plications for distinct purposes. This has resulted in application diversity which was in-
itially not much of a problem, because applications were meant to automate self-suffi-
cient, independent functions.

Meanwhile, applications are so dominant that most of the crucial business functions
are implemented by them; their integration has now become a vital issue for an enter-
prise. Integration is especially of concern to large organizations which need to improve
efficiency and collaboration across disparate organizational functions. There are many
different approaches to integration [12]: technology integration, data integration, and
application integration. In our considerations, we focus on the latter, the most compre-
hensive and challenging form of integration, namely (enterprise) application integra-
tion. Enterprise application integration (EAI) is a whole discipline working on this issue
[13]. When integration has to be extended to inter-enterprise integration, the issue be-
comes even more challenging. In this context, topics like supply chain management, e-
procurement, and marketplaces are discussed intensively.

202 Stefan Jablonski

There is much written about EAI; many publications discuss requirements and
high-level approaches in general, instead of offering concrete solutions. We do not want
to extend this discussion, but want to pursue an approach in this article which seems to
contribute considerably to the EAI issue: the message-oriented approach. However, this
approach also has to be analyzed thoroughly, before it can be applied. Two aspects have
to be considered:

• The message-oriented approach is absolutely compliant with modern architectural
approaches, e.g., services-oriented architectures (SOA) or message-oriented middle-
ware (MOM).

• The message-oriented approach is technology (system)-driven; in order to effective-
ly enact it, application knowledge must be incorporated.

SOA is an architectural style [6] whose goal is to achieve loose coupling among inter-
acting programs, here called software agents. A service is a unit of work performed by
a service provider to achieve the desired results for a service consumer. Both provider
and consumer are roles played by software agents on behalf of their owners. How is
loose coupling among interactive software agents achieved? Two architectural con-
straints have to be employed:

• Simple and ubiquitous interfaces: The interfaces must be available for all providers
and consumers.

• Descriptive messages: The messages must be constrained by an extensible schema
which limits the vocabulary and the structure of messages.

SOA is based on messages to be exchanged between software agents. MOM is intro-
duced to increase interoperability, portability, and flexibility for message exchange [4],
because software agents can be distributed over multiple heterogeneous platforms.
MOM reduces the complexity of the development of software agents that span multiple
operating systems and network protocols by insulating the application developer from
the details of the various operating systems and network interfaces. MOM provides ap-
plication programming interfaces (APIs) that extend across diverse platforms and net-
works.

Both SOA and MOM are system-oriented concepts which focus on the provision of
architectural constraints and infrastructural means. What is missing—but this is a natu-
ral consequence of the system-oriented perspectives of SOA and MOM—are guidelines
when to use what messages in order to facilitate the development of an application sys-
tem.

Since more than a decade, process modeling has been regarded as a most adequate
means to model application systems [7]. The behavior of applications participating in a
comprehensive process is typically described by their need to exchange messages
among each other. Thus, process modeling (and enactment) ideally completes the mes-
sage-oriented approach by identifying messages that are produced and consumed by ap-
plications. For example in [5], workflow management—which represents a special
form of process modeling and enactment Sect. 9—is regarded as the top of a stack of
messaging methods to support enterprise application integration. It refines techniques
like basic asynchronous messaging, message brokering, and message transformation.

Processes, Workflows, Web Service Flows 203

Workflow management must be analyzed when process-oriented applications have to
be investigated.

Workflow management is not the only infrastructure to enact workflows, however,
it is a very prominent one [8]. Not before the advent of Web services [1], it seemed to
embody the only feasible infrastructure for process enactment. Of course, there were
other concepts like ECA rules (event-condition-action rules); however, these concepts
were only of limited use to implement complex processes. Then with Web services,
Web service flow languages have entered the picture. Those languages aim at the en-
actment of process-oriented applications implemented in form of Web services. From
that time on, workflow management more and more has been ignored and Web service
flow languages have overtaken the role of workflow management for processes, espe-
cially in the academic literature. There are a couple of reasons why this happened:

• Workflow management was not as successful as it was forecasted. However, this is
not a failure of this technology but it is due to un-reflected predictions given by many
researchers and industrial representatives at the beginning of the nineties. Workflow
management was praised as a panacea. It was not taken into account that, firstly,
workflow management is a complicated technology and, secondly, workflow man-
agement only fits specific applications. Because workflow management was very of-
ten applied in applications which were not suitable for that technology, many work-
flow projects were failing. Instead of blaming the responsible project leaders, the
technology was blamed which ended up in a bad reputation of workflow manage-
ment.

• Each (modern) time needs its hype topic. So, as we experienced it with workflow
management a dozen years ago, Web service flows are now praised as a next sort of
panacea. They seem to successfully be workflow management’s heir with respect to
process enactment. However, Web service flow languages still lack the proof of
broad applicability.
What are our consequences from these observations and developments? Shortly

spoken, we consider both workflow management and Web service flows as powerful
technologies. Although we see fundamental differences in their deployment areas, and
we believe that they can ideally leverage on each other. To identify their areas of de-
ployment, we are reconstructing both technologies in this paper. As a result, we want to
contribute to their adequate usage, such that they are not neglected due to unprofession-
al use and consequently unsuccessful projects.

Workflow management and Web service flows are not the only techniques that are
able to enact processes. Processes could also be enacted in conventional programming
languages. However, in contrast to programming languages, workflow management
and Web service flows incorporate a process model which programming languages do
not have. This allows describing processes at a more abstract level and so the usage of
this process technology is much more comfortable.

This article shows the following structure. After the introductory remarks of this
first section, we briefly introduce processes in Section 2. The area of workflow man-
agement is reconstructed in Section 3, whereas in Section 4 the same is done for Web
service flows. Section 5 compares workflows and Web service flows and reveals simi-

204 Stefan Jablonski

larities, differences, and complementary features of both technologies. It provides some
practical guidelines when to use what of these alternative and complementary tech-
niques. To convey this recommendation is the major contribution of this article. Finally,
Section 6 is concluding our considerations.

2 A General Model for Processes

Before we are going to reconstruct both workflow management and Web service flows,
we introduce a general model for processes used to describe and compare both technol-
ogies. This model is derived from the Mobile process model [8] which is a very general
one and, therefore, is suitable to represent a framework for process modeling.

The Mobile model defines a conceptual model and syntax for processes. The goal
of the model is to provide a framework for process descriptions. Therefore, it is defining
processes in terms of several aspects, the so-called perspectives. The feature which
translates Mobile from a normal process model into a framework is its ability to be cus-
tomized to different application areas. In order to do so, new aspects can be added, ex-
isting aspects can be modified (e.g., by changing its attributes) or can be discarded. Mo-
bile regards the following five aspects as important but not as mandatory (this is a sim-
plified description; for details refer to [8]):

• Functional perspective: It describes which steps have to be performed in a process;
composite processes consists of further (sub-)processes, elementary processes repre-
sent tasks to be executed.

• Operational perspective: This dimension is introduced to determine the application
programs and resources called to execute an elementary process.

• Behavioral perspective: Here, the control flow of a process is defined. It specifies in
what order sub-processes are executed.

• Data perspective: Data flow defines the way data is exchanged among processes.

• Organizational perspective: This dimension identifies the agents that are responsible
to execute a certain process.
Figure 1 shows a simple example of a Mobile process (modeled with the i>Process-

Manager [14], a process modeling tool, completely based on the aspect-oriented mod-
elling paradigm). On the left hand side of the i>PM modeling tool in Figure 1, the five
perspectives from above can be found: processes (here: Prozesse), organization (here:
Organisationen), flows (control and data flows) (here: Flüsse), data (here: Daten), ap-
plications (here: Werkzeuge/Systeme). The process modeled (here: Bauteilkonstruk-
tion) comprises a couple of sub-processes (white rectangles). Data flow is represented
by arcs with connected data (colored rectangles) between the processes. Some process-
es show an organization responsible to execute it (lower left corner of the rectangle),
some of them show tools to be used when a process step is executed (upper left corner
of the rectangle). To execute the top-level process “Bauteilkonstruktion”, its compo-
nents, i.e., its sub-processes, must be performed. “Eingang” illustrates the start of this

Processes, Workflows, Web Service Flows 205

execution, “Ausgang” its end; both constructs are optional; they are used here to indi-
cate starting and ending points of the depicted process.

3 Workflow Management — Revisited

The Workflow Management Coalition defines a workflow as an automation of a busi-
ness process, in whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules [18].
This is some acceptable characterization of a workflow, sufficient for the upcoming dis-
cussion. Before we are going to analyze the content of workflow models, we firstly
want to demonstrate how the example process of Figure 2 is enacted by workflow man-
agement. This is accomplished by illustrating the participants such an enactment is re-
quiring. Therefore, we are using (simplified) sequence diagrams showing either active
objects (participants) involved in an enactment and the messages that have to be ex-
changed between them.

 A user starts the execution of a workflow (step 1 in Figure 2). This is done via the
worklist which is the usual user interface of a workflow management system (WfMS).
The worklist notifies the WfMS to start the corresponding workflow (step 2). The start
of a workflow happens once. For each step within the workflow, the now following ac-
tions take place. When a certain workflow is ready for execution, the WfMS puts a task,

Fig. 1 An Example Process

206 Stefan Jablonski

i.e., a workflow to be executed, back into the worklist of the corresponding user (step
3). The user is notified about this event (step 4) and can start the related task (step 5).
This is transmitted to the WfMS (step 6) which now launches the application associated
with the task (step 7). The user is notified (step 8) and interacts with the application until
(s)he closes it (step 9). This is communicated to the WfMS (step 10) and further to the
worklist (step 11). Finally, the user is notified about the end of the task (step 12). Sub-
sequently, the same scenario could be repeated for each task within a workflow. After
the whole workflow is performed, the WfMS might inform the user about the end of
processing (step 13 and step 14).

The attentive reader might have encountered some inaccuracies in the above de-
scription which now have to be cleared up. A first remark is very important, but is not
so relevant for the discussion in this article. In Figure 2, we just show one possible ex-
ecution semantics for a workflow. However, there are many valid alternatives possible.
For example, it might be the case that the worklist directly starts an application or an
application directly communicates with the worklist when it terminates.

A second remark is essential for our reconstruction. In the description of the work-
flow execution above, we have just talked about a single user. Conversely, in Figure 2
we distinguish between several users: on the left side, a so-called “user wfms” is shown,
and on the right side, a so-called “user app” is identified. By this distinction we want to
express that—in principle—the users of the WfMS and the application could be sepa-
rate entities. However, in the normal case, the two users will be the same.

1: Start workflow

3. Put task

2: Start workflow

4. Notify user

5: Start tast
6: Start task

7: Call app

8: Inform user

9. Close app
10. Notify WfMS

11. Notify worklist

12. Notify user

user

wfms

worklist (user wfms) applicationWfMS

user

app

13. Notify worklist

14. Notify user

for all steps in a workflow

Fig. 2 Executing a Workflow

Processes, Workflows, Web Service Flows 207

In Figure 2, some major characteristics of workflow management can be identified.
First, a WfMS provides a special interface to their users, the worklist; this also implies
that users are expected to directly interact with a WfMS. Normally workflow execution
is explicitly initiated and initialized by them. Indeed, the Workflow Management Coa-
lition regards the worklist as one of the basic concepts [18].

In the context of a WfMS, users are frequently humans, although technical artifacts
like programs or robots may play the role of a user, too. Another feature of a WfMS is
that tasks are executed which typically are applications called from these tasks. Appli-
cations are often interactive, i.e., users are again expected to cooperate with them direct-
ly.

Without going into details, a workflow comprises all the aspects that are introduced
in section 2. This can also be derived from the definition of a workflow by the Work-
flow Management Coalition (W3C) presented at the beginning of this section. We will
discuss this issue further in section 5.

4 Web Service Flows — Revisited

According to the W3C, a Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface described in
a machine-processible format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-relat-
ed standards [10] [17]. Here, it becomes very obvious that Web services are designed
for cooperation between machines.

Business or other activities that involve multiple kinds of organizations or inde-
pendent processes that use Web service technology to exchange information can only
be successful if they are properly coordinated [16]. This means that a sender and a re-
ceiver of a message know the sequence and conditions in which messages are ex-
changed. A shared common or “global” definition of the sequence and conditions is
provided by the Web service choreography [16]. We call such a sequence of Web serv-
ices to be choreographed a Web service flow. Modelling languages for Web service
flows are BPEL [2] and BPML [3], for instance.

Similar to the previous section, we want now explain how processes are executed
as a Web service flow. We again use sequence diagrams to illustrate this.
A Web service flow is started by a user (step1 in Figure 3). The Web service execution
environment (WSEE) is responsible to execute a Web service flow (see section 5 for
more details). Each Web service flow is started once. Then the following actions take
place for each step within this Web service flow. Normally, the execution of a step in-
volves the launch of an application (step 2). An application might interact with a user
(step 3 and step 4). When the application is terminated, the WSEE will be notified by
the application (step 5). If all steps of a Web service flow are executed, the user might
be notified about the termination (step 6).

208 Stefan Jablonski

Symmetrical to the discussion of execution semantics for workflows in the former
section, there are also alternative execution semantics for Web service flows. Because
this is not so relevant for this article, we omit an extended discussion. Comparing Fig. 2
and Fig. 3, the reader recognizes a couple of major differences between workflow man-
agement and Web service flow execution. Although this discussion is up to the next sec-
tion, we must anticipate some of the observations right away. A WSEE does not provide
a component analogous to the worklist of a WfMS. Furthermore, there is a major dif-
ference in the interpretation of users in a Web service environment. A (simple or com-
pound) Web service is typically initiated by a program, i.e., “user ws” typically is a
piece of software. In contrast, applications frequently do not interact with human users,
i.e., they are typically not interactive, but are running in a kind of batch mode. This ob-
servation is affirmed by the definition of Web services, where the machine-machine in-
teraction is put into the center of interest.

With the exception of the special design of the organizational aspect, Web service
flows comprise principally all aspects of the general process model of section 2. How-
ever, the special definition of the organizational aspect will be considered further in the
following section.

1: Start

Web service

2: Call app

3: Inform user

4. Close app
5. Notify WSEE

6. Notify user

user

ws

applicationWSEE

user

app

for all steps in a Web service flow

Fig. 3 Executing a Web Service Flow

Processes, Workflows, Web Service Flows 209

5 Comparison and Assessment

In this section, some fundamental differences between workflow management and Web
service flows are elaborated. In addition, we discuss at the end of this section how both
techniques can leverage on each other in a synergetic way.

5.1 The Approach

This first criterion reflects the global approach for workflow management and Web
service flow applications, respectively. It has to be considered that our observation is a
principle one which reproduces the current and typical usage of both techniques. There
are always forms of usage which deviate from this principal one.

Due to the sequence of their advent we start with workflow management. Also due
to its development more than a decade ago, workflow management is now a kind of
“normal” application in the sense that it is an installed software component and selected
users have access to it. The selection of users is determined by the process definitions
(organizational perspective) intended to be performed on the WfMS. Thus, we would
like to call this application a “closed” one, because there is a clear and sharp perception
of who should participate in the workflow management application.

Another criterion for the delimited scope of workflow management applications
can be seen in the missing technical standards besides direct process-related standards:
above them, no more technical standards are defined such as access protocols or data
formats that would support the rapid incorporation of participants. The disregard of
these issues does not mean that workflow technology is not complete, rather, it means
that quick incorporation of arbitrary users is not the primary issue: if a user wants to par-
ticipate in a workflow management application, it has to study and to adopt the required
protocols and data formats first. Only if both issues were completely based on general
standards, this incorporation could be facilitated very quickly.

In contrast to the closed world of workflow management, we tend to characterize
Web service flow applications as “open”. The Web service approach is totally different
in comparison to the workflow approach. We assume to have a Web service execution
environment with SOAP as a protocol, WSDL and, for example, BPEL as specification
languages, and—what is most decisive—UDDI as registry for Web services [11]. Who
is then eligible to participate in a Web service flow execution? All participants who can
principally reach the UDDI registry and can, therefore, offer or use Web services, are
desired to take part in a Web service application—access rights and payment for the use
of Web services have to be taken into account of course. Therefore, the Web service ap-
plication is open to all participants that can reach the UDDI registry. This set might be
restricted, because a UDDI registry can be installed within an intranet solely for some
division of a company; nevertheless, for all participants of this division the participation
in the Web service application is possible. As a consequence, the eventual users cannot
be determined in advance. In contrast, it is desired that many users are participating:
also users that are deciding to participate in an ad hoc manner are welcome. In order to

210 Stefan Jablonski

alleviate rapid access to Web service flow applications, it is necessary not just to foster
standardized concepts for process modelling, but also data and protocols necessary to
locate, to identify, and to call a Web service must comply to standardized formats (e.g.,
WSDL, UDDI, SOAP).

It is quite obvious that the closed and the open character of workflow management
and Web service applications, respectively, can be loosened; nevertheless, it is recom-
mended to take this difference into consideration when applications are going to be de-
signed and a technology to enact these applications is choosen. To make a fully closed
system out of a Web service application is cumbersome to achieve and, vice versa, to
build a fully open system out of a workflow management application is also burden-
some to accomplish. Therefore both attempts are not recommended.

5.2 The Implementation

The different character of workflow management and Web service flows also is re-
vealed by analyzing their way how they are implemented. We again start this investiga-
tion by looking onto workflow management first.

The normal way to implement a workflow management application is to install a
WfMS—hereby, it is not relevant whether it is a centralized or distributed installation.
Then, processes, applications, data, and users are made known to it. Next, the WfMS is
performing processes, utilizing all these known artifacts.

Aiming at the execution of a Web service flow application, the proceeding is totally
different. Web service execution infrastructure is considered to be a common shared
middleware. So, (almost) each application server is bearing infrastructure for Web serv-
ice execution, e.g. [15]. So a Web service application can be set up in an ad hoc way.
Since application server are aiming to support standardized techniques the rapid enact-
ment of Web service applications is facilitated.

5.3 The Content

We talked about the contents of either workflow-oriented process models and Web
service flow-oriented process models already in Sections 3 and 4. It is common to both
approaches that the functional, the behavioral, the data, and the operational aspect of a
process model are implemented. However, the two approaches differ drastically in the
organizational aspect. Figure 2 and Figure 3 depict the difference in an illustrative way.
While in the concept of workflow management a user is explicitly anticipated, Web
service flows do not emphasize this. This can best be exemplified by the notion of the
worklist. In a workflow management scenario, a workflow is explicitly introduced as
an interface between the WfMS and (often human) users, there is nothing comparable
for Web service flows.

As was discussed already, Web service flow applications do mostly anticipate the
inclusion of batch programs while workflow management applications do support in-
teractive applications in a much more intensive manner. A usual scenario is to perform

Processes, Workflows, Web Service Flows 211

a task that is listed in the worklist which results in the execution of an application that
has to be served by a (human) user, typically the same user having issued the task exe-
cution request.

5.4 The Synergy

We consider the dissimilarity of workflows and Web service flows as advantageous. It
is extremely good that the one technology (Web service flow) is not just the successor
of the other technology (workflow management) but is conceptually seen something in-
novative. This difference offers opportunity for synergy. Synergy between workflow
management and Web service flow will be discussed in this subsection.

There are a number of places where Web service technology can be used in work-
flow management environments. Firstly, there are spots where supporting technology
for Web service flow execution can be used. SOAP as a standard communication pro-
tocol is suited to support all communication tasks in a WfMS. We might even use an
UDDI-like registry to register all workflows of an application realm. Up to a certain de-
gree, WSDL and BPEL can be used to describe workflows, although there might be lan-
guage features missing sometimes (e.g. to specify the organizational perspective).

Even when we discuss different opportunities for synergy here, we assess the fol-
lowing category of synergy as most relevant. Because Web service flows are an ade-
quate means to describe a sequence of executions of batch programs, we could regard
such a flow as workflow application that is called from a certain workflow step (Figure
4a). Having to model a sequence of batch applications in a workflow—without having
the concept of Web services at hand—is often very cumbersome: a pseudo worklist
must be defined for each batch application; a pseudo agent is then calling the applica-
tion. From the WfMS point of view, such a Web service flow corresponds to a workflow
application that is to be called. Figure 4 summarizes the results of this last point of dis-
cussion.

workflow step

application

Web service flow

calls

is implemented by

Web service flow

is implemented by

workflow step

Fig. 4 Integration of Workflow and Web Services

212 Stefan Jablonski

Symmetrical to the last observation, there is another nice synergy between workflows
and Web service flows that leverages exactly on the different abilities to execute batch
and interactive applications, respectively. A whole workflow can nicely be considered
as a Web service which is part of a Web service flow (Figure 4b). This workflow could
best facilitate the execution of a couple of interactive programs which otherwise would
be very awkward to specify as Web services.

The capacity to bidirectionally call each other, workflows and Web service flows
could ideally leverage on each other. Especially with respect to the integration of both
batch and interactive applications, they can cover a broad spectrum of process-oriented
applications.

6 Conclusion

In principle, the last section summarizes the conclusions of this article: workflows and
Web service flows are different in nature. Although, they can nicely complement them-
selves in a synergetic way.

In this article, we were reconstructing workflows and Web service flows with the
intention to help application designers to choose the right technique. We also wanted to
contribute to the actual discussion of Web services that workflows are still not obsolete
but are complementary to Web service flows.

References

[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Architectures,
and Applications. Springer-Verlag, 2004

[2] Business Process Execution Language (BPEL) for Web Services Version 1.1,
http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003

[3] Business Process Modeling Language (BPML), http://www.bpmi.org/bpml.esp, 2004
[4] Carnegie Mellon, Software Engineering Institute: Message-Oriented Middleware.

http://www.sei.cmu.edu/str/descriptions/momt.html, 2004/10/28
[5] Cummins, F.A.: Enterprise Integration with Workflow Management, Presentation on No-

vember 1,1999,
http://www.bijonline.com, 2004/10/14

[6] Erl, T.: Service-Oriented Architecture. Prentice Hall, 2004
[7] Hammer, M., Champy, J.: Reengineering the Corporation. HarperBusiness, 2004
[8] Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and

Implementation. International Thomson Publishing, 1996
[9] Jablonski, S., Bussler, C.: Process Modeling and Execution in Workflow Management

Systems. Proceedings 3rd International Workshop on Information Technologies and Sys-
tems, Orlando, FL, Dec. 1993

[10] Jablonski, S., Petrov, I., Meiler, C., Mayer, U.: Guide to Web Application and Plattform
Architectures. Springer-Verlag, 2004

Processes, Workflows, Web Service Flows 213

[11] Jeckle, M.: Techniken der XML-Familie zur Systemintegration. IT-Information Technol-
ogy, Heft 4, 2004

[12] Linthicum, D.S.: Enterprise Application Integration. Addison Wesley, 1999
[13] Linthicum, D.S.: Next Generation Application Integration. From Simple Information to

Web Services. Addison-Wesley, 2003
[14] ProDatO: i>PM, integrated ProcessManager. White Paper.

http://www.prodato.de, 2004/10/28
[15] The Apache Cocoon Project, http://xml.apache.org/cocoon/, 2004
[16] WS Choreography Model Overview, W3C Working Draft, 24 March 2004. 2004/10/28
[17] W3C: Web Services Glossary, W3C Working Group Note, 11 February 2004, 2004/10/28
[18] WfMC: Terminology & Glossary. Document Number WFMC-TC-1011, Document Status

- Issue 3.0, Feb. 99

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 215-234, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Pros and Cons of Distributed Workflow

Execution Algorithms

Hans Schuster

Consileon Business Consultancy GmbH, Germany
hans.schuster@consileon.de

Abstract. As an implementation of business processes workflows are inher-
ently distributed. Consequently, there is a considerable amount both of com-
mercial products and research prototypes that address distribution issues in
workflow execution and workflow management systems (WfMS). However,
most of these approaches provide only results focussed on the properties of a
specific workflow model, workflow application, and/or WfMS implementa-
tion. An analysis of generic requirements on distributed workflow execution
algorithms and their applicability, advantages, and disadvantages in different
workflow scenarios is still missing but will be shown in this paper. A com-
prehensive requirements analysis on distributed workflow execution forms
the basis of our discussion of distributed workflow execution. In contrast to
existing work that primarily focuses on non-functional requirements, this pa-
per explicitly considers issues that originate in the workflow model as well.
Subsequently, four basic algorithms for distributed workflow execution are
presented, namely remote access, workflow migration, workflow partition-
ing, and subworkflow distribution. Existing WfMS approaches use combina-
tions and/or variants of these basic algorithms. The properties of these algo-
rithms with respect to the aforementioned requirements are discussed in de-
tail. As a primary result, subworkflow distribution proves to be a well-suited
application-independent and thus generally applicable distributed execution
model. Nevertheless, application-specific optimizations can be accomplished
by other models.

1 Motivation

Today’s enterprises are highly distributed. The trend to enter cooperations among dif-
ferent enterprises in order to build virtual enterprises even intensifies this distributed na-
ture. Workflow management is a promising technology to implement business process-
es in traditional as well as virtual enterprises through workflows that are enacted by
workflow management systems (WfMS). WfMS integrate both human and fully auto-
mated activities within workflows [17].

216 Hans Schuster

Due to the distributed nature of the application environment, workflows, i.e. their
executions, have to be distributed themselves. Hence, there is a strong need for suitable
methods for distributed workflow execution. Although, there are many commercial
workflow products and academic WfMS prototypes that all support some kind of dis-
tributed workflows, there is still no commonly agreed upon workflow model although
the Business Process Execution Language for Web Services (BPEL4WS, [1]) is on a
good way to establish an agreed standard for fully automated workflows. There is also
no commonly agreed distributed execution model for workflows The existing ap-
proaches address only specific problems of distributed workflows in the context of a
particular workflow model without tackling the general problem. A comprehensive
analysis of the basic requirements on distributed workflow execution and alternative so-
lutions is still missing. However, only such an analysis can build up a solid foundation
for a decision how to implement a workflow application in a particular (virtual) enter-
prise. A taxonomy for the suitability of distributed workflow execution algorithms in
specific application scenarios is highly desirable.

The main contribution of this paper is the identification of four generic algorithms
for distributed workflow execution, and their thorough discussion with respect to a
comprehensive list of requirements covering model-related (e.g., synchronization of ac-
tivities) and behavioral (e.g., performance, scalability) requirements. ’Generic’ in this
context means that—in contrast to other work done in this area—we do not assume a
specific workflow model and/or WfMS implementation. In contrast, this work is based
on a set of rudimentary assumptions that are fulfilled by virtually all existing workflow
models. Distributed workflow execution algorithms proposed in the literature [3, 16, 4,
5, 6, 10, 11, 14, 21, 22, 27, 25] are a combination of the four generic algorithms. There-
fore, it is not our objective to propose a new way to implement distributed workflows
but to improve the understanding of the problem of distributed workflow execution.
The results of this paper can serve as a foundation when deciding which approach to
chose in a concrete workflow application scenario.

The next section presents the requirements that have to be fulfilled by distributed
workflows. Section 3 introduces the four basic distributed workflows execution algo-
rithms and discusses their general properties and combinations. The efficiency of these
algorithms is the focus of section 4. Finally, section 5 presents a brief overview on ex-
isting work in analyzing distributed workflow approaches and Section 6 gives a short
conclusion.

2 Requirements on Distributed Workflow Execution

Distributed workflow execution is not an end in itself. On the contrary, it is the answer
on the demand for the adaptation of workflow execution to the distributed nature of the
application environment in today’s enterprises. This answer is naturally constrained by
requirements that result from the workflow model used in a WfMS. Additionally, a dis-
tributed WfMS has to meet the non-functional requirements of application, like scala-
bility and efficiency. section 2.1 defines the terminology used in this paper and our as-

Pros and Cons of Distributed Workflow Execution Algorithms 217

sumptions with respect to workflow models. section 2.2 presents the functional require-
ments originating from the workflow model, section 2.3 is dedicated to the non-
functional ones.

2.1 Definitions

According to [13, 17, 31, 32], a workflow is a set of computer-supported activities
which implement parts of one or more business processes. A workflow has a well-de-
fined start, an automatically coordinated process, and a well-defined end. A workflow
is not restricted to automatically executed processes, like multi-system transactions, but
can also coordinate the actions of human participants in complex enterprise scenarios
or be a combination of both. The coordination of a workflow’s execution is established
by a WfMS. Although workflows are in fact processes, they are also (data) objects from
the implementation’s point of view. The workflow execution is driven by operations on
the workflow instance data [17], e.g., to create, start, and terminate workflow instances.
Definition 1: Workflow type, workflow instance

Each workflow type (workflow schema) wt is defined by a workflow specifica-
tion WF-Spec(wt) that enfolds the algorithmic description of the workflow and
a set WF-Op(wt) = {op1, ..., opn} of workflow operations. A workflow instance
wi is an instantiation of a workflow type. The workflow type of a particular
workflow instance wi is denoted in this paper as Type(wi), the state of wi as
State(wi).

The set of workflow operations WF-Op(wt) of a workflow type wt is subdivided into
workflow type operations, e.g. for creating a workflow instance of a workflow type wt,
and into workflow instance operations, which operate on the workflow instances, for
example to start, stop or destruct workflow instances.

Business processes in real life are often very complex. This is the reason for subdi-
viding work into smaller steps, whereby each step is easier to handle and understand
than the whole. In the following, we assume the same for workflows (Definition 2).
Definition 2: Subworkflows, father, top-level, and elementary workflows

Composite workflows are functionally decomposed into a set of subworkflows.
A workflow (instance) becomes a subworkflow (instance) by being created in
the context of a composite workflow (instance), called father workflow. A work-
flow (instance) without a father workflow is called top-level workflow (in-
stance). Each subworkflow (instance) in turn is a workflow in its own right, i.e.,
it has its own workflow type, can be further decomposed in subworkflows, and
is represented by its own instance data (e.g. data container and dependencies).
The internal instance data is private to the corresponding workflow instance. A
(sub)workflow is a unit of work and can be assigned to roles. A workflow (in-
stance) which consists only of invocations of external applications is an elemen-
tary workflow (instance).

Functional decomposition of workflows is supported by virtually every commercial
workflow model and by many workflow models used in research prototypes. However,

218 Hans Schuster

there is no commonly accepted terminology. In WebSphere MQ Workflow [16] (for-
merly called FlowMark), for example, a workflow—called process—consists of activ-
ities. Composite subworkflows are called process activities and reference a process
template, i.e., have a process type. Program activities correspond to elementary sub-
workflows. The Workflow Management Coalition calls a composite subworkflow sub-
process [34]. Definition 2 assumes role assignment for both elementary and composite
subworkflows, which is consistent with the Workflow Management Coalition standard
[35, p.168] and many WfMS products, e.g., IBM WebSphere MQ Workflow [16], BEA
WebLogic Integration [8], and Oracle Workflow [24].

To enable a coordinated execution of a workflow, additional information besides
subworkflows and external applications is required. According to the literature, e.g. [17,
18, 31], a workflow covers at least control and data flow dependencies among subwork-
flows, workflow-relevant data, and assignment of actors (roles) to subworkflows. This
leads to the following refinement of the workflow specification. The state State(wi) of
a workflow instance wi can be refined analogously.
Definition 3: Workflow specification

The specification WF-Spec(wt) of a workflow type wt consists of a set of typed
subworkflow placeholders SubWF(wt), a set of references to external applica-
tions ExtApp(wt), a set of data variables Data(wt) for workflow relevant data,
control and data flow dependencies (CFDep(wt) and DFDep(wt)), and a set of
role assignment rules RoAss(wt). Thus, WF-Spec(wt) = (SubWF(wt), Ex-
tApp(wt), Data(wt), CFDep(wt), DFDep(wt), RoAss(wt)).

Definition 3 does not define what kind of dependencies are available and how they re-
late subworkflows. Since existing workflow models differ significantly with respect to
dependencies, this paper will stay at this general level to reach results valid for a wide
range of existing WfMS.

The execution of workflow operations is usually requested by the player of the role
that is assigned to the corresponding workflow instance (called participant in Definition
4). In fully automated workflows the WfMS itself may request a workflow operation to
be performed. Based on these prerequisites, Definition 4 introduces the term distributed
workflow execution.
Definition 4: Distributed workflow execution

The execution of a workflow instance is called distributed, if at least two work-
flow operations within this workflow execution are requested by participants in
different physical locations or if workflow instance data are distributed among
different components of the computing infrastructure.

Note, we do not assume a distributed workflow enactment service as a mandatory pre-
requisite for distributed workflow execution. The distribution of a workflow’s partici-
pants already constitutes distributed workflows.

Pros and Cons of Distributed Workflow Execution Algorithms 219

2.2 Model-Related Requirements

The distributed execution of workflows is not straight forward because a composite
workflow implements a coordination pattern among its subworkflows. The coordina-
tion rules are made up by data and control flow dependencies (CFDep(wt),
DFDep(wt)) and by role assignment rules (RoAss(wt)). The WfMS has to ensure that
the specified coordination rules are fulfilled in a distributed environment. To illustrate
this, Figure 1 shows a simplified workflow specification for a currency trading work-
flow running in a distributed bank environment, which consists of a set of branches and
some departments for asset management and for stock market trading. In larger banks
not only the branches are distributed but also the other departments. In Figure 1, the or-
ganizations that perform stock market trading are located at different physical locations,
e.g., there may be brokers in New York, London, Tokyo, Frankfurt, etc.). In fact, the
tasks in some locations may be even sourced out to a different company. For example,
the stock market trading may be performed by separate brokering companies, i.e., the
bank may be a virtual enterprise.

The currency trading workflow is initiated on a customer request by a bank clerk
within a branch. The first subworkflow, registering a customer’s order to buy or sell a
certain amount of currency, is done by the initiating clerk. Depending on the amount of
currency and the current situation of the bank, there are two possibilities to proceed:
first, the order could be fulfilled by the bank’s internal trade. Second, the bank could go
to the stock market in order to process the order. The WfMS has to ensure that only one
of these variants is chosen. Processing an order twice must be prohibited in all circum-
stances. However, the decision which variant is to be taken in a workflow instance is
done by the human actors within the responsible organization (asset management and
broker) and is not predefined by a condition that could be evaluated by the WfMS. In
both variants, trading is performed in general at different geographic locations than or-
dering. After performing the trade the workflow returns to the branch where it has been
started, the customer’s invoice is determined and the workflow terminates. In the fol-
lowing we briefly discuss the requirements on the distributed execution of workflows
in more detail.

Fig. 1 Distributed Workflow Example

Trading currency

Order Customer invoice

Internal trade

Stock market trade

Clerk of asset
management

Broker

Branch of initiatorInitiator

EXOR

Bank clerk

Internal accounting
Accounting department

220 Hans Schuster

Synchronization of Concurrent Subworkflows
Both control and data flow dependencies define a relationship among two or more sub-
workflow instances within a father workflow. Some of these dependencies, for example
the well-known sequence control flow dependency [17, 29], imply just an execution or-
der for some workflow instances. Other control flow dependencies influence also the
existence of workflow instances, e.g., deadline and delay [17] and the exclusive or (EX-
OR) [17, 29]. Data flow dependencies that consume data items from a pool can also en-
tail the existence or non-existence of subworkflows, if there are multiple consuming
subworkflows. Petri net based workflow models, e.g., FUNSOFT nets [12], support
these kind of data flow dependencies.

During workflow execution, control and data flow dependencies that have impact
on the existence of subworkflows imply a strict synchronization on the execution of the
affected subworkflow instances’ constructor operations. This is necessary to enforce
the dependencies in case multiple subworkflow instances are to be created concurrently.

In the example workflow shown in Figure 1, “Internal trade” and “Stock market
trade” are two concurrent subworkflows which have to be synchronized. Only one of
them is allowed to be executed. Only the actors responsible for the concurrent subwork-
flows decide if and when they want to execute a subworkflow. If the operations of two
or more users conflict, e.g. when two actors try to execute the “Internal trade” and
“Stock market trade” workflow at approximately the same time, the WfMS must be able
to detect this and prevent a violation of the workflow specification, e.g., by rejecting
one of the actors’ requests.

Synchronization of Concurrent Actors
Most WfMS, e.g., [8, 16, 17, 24] provide role assignment rules that assign a subwork-
flow to players of a set of roles. The work item corresponding to this subworkflow
therefore appears on the worklists of a set of actors, but only one of them shall perform
the subworkflow. This synchronization strategy is called one out of many. Depending
on the workflow model, other more complicated synchronization policies are possible
[9, 30]. To facilitate our analysis of algorithms for distributed workflow execution, we
will concentrate on the one out of many strategy, because this strategy is mostly used in
today’s workflow applications. Other synchronization strategies may lead to slightly
different results, but in any case the WfMS has to synchronize actors who try to concur-
rently access the same subworkflow instance.

The aforementioned issue shows up in the example of Figure 1, if the “Stock market
trade” subworkflow is analyzed in more detail (Figure 2). There are several major stock
markets all over the world and virtually all major banks are working globally. Thus, a
customer order can be processed by different brokers located at different places all over
the world. The WfMS has to ensure that the order is processed only once by synchro-
nizing the brokers’ operations.

Pros and Cons of Distributed Workflow Execution Algorithms 221

2.3 Non-functional Requirements

Besides implementing the features of a workflow model, a WfMS also has to meet the
non-functional requirements implied by the application environment. An exhaustive
coverage of these requirements is not possible here because of space limitations. Thus,
only these issues are considered that apply to a wide range of workflow applications [2,
28].

Support for heterogeneous WfMS environments. It is unrealistic to assume a
homogeneous WfMS infrastructure in a large company or a virtual enterprise consisting
of multiple companies. In the banking example of Section 2, some departments likely
have their own WfMS installation depending on a different WfMS as other depart-
ments. Independent broker firms that perform the stock market trading will probably
use a different WfMS than the bank. Nevertheless, enterprise-wide workflows, like the
’Trading Currency’ workflow, have to be executed despite of this heterogeneity. This
must be considered when choosing a distributed workflow execution model.

Scalability. In the context of WfMS, two aspects of scalability can be identified. First,
a WfMS must be scalable to varying workloads, i.e., independent of the number of ac-
tive users and concurrently running workflow instances the system should be able to
provide approximately the same response time. Second, a WfMS must be scalable to
the size and structure of an enterprise. This involves locating and coordinating WfMS
users, workflow types and instances, and WfMS computer resources as well as consid-
ering locality and control requirements of workflow participants [26]. For example, de-
partments and in particular external companies may insist in having control over “their
part” of the workflow.

Fig. 2 Concurrent Actors

Stock market trade

Broker

... ...

Broker
(Frankfurt)

Broker
(Frankfurt)

Broker
(Tokyo)

Broker
(London)

Broker
(New York)

.
.

.

222 Hans Schuster

Availability. If WfMS implement mission-critical workflows availability issues be-
come important. Depending on the workflow application, availability guarantees may
be required for particular workflow instances, or some kind of graceful degradation of
the WfMS may be wanted in case some system components fail. While the first kind of
availability can only be reached by introducing redundancy [20] and is outside the scope
of this paper, the second type may be reached by avoiding single points of failure within
the distributed workflow execution algorithm.

Efficiency of the workflow execution. Like any other computer system that has
to deal with interactive users, a WfMS has to perform efficiently. For example, if a bro-
ker decides to execute an order, i.e., to perform the ‘Stock market trade’ activity, the
WfMS has to quickly synchronize this operation with the other brokers and the alterna-
tive execution path in the workflow (section 2.2).

3 Approaches to Distributed Workflow Execution

In the system architecture of a WfMS both a client/server and peer-to-peer approach can
be taken (section 3.1). However, this architectural decision has only limited impact. The
primary issue is the distributed execution algorithm. In section 3.2, four basic algo-
rithms are presented. section 3.3 then provides a discussion of these algorithms with re-
spect to the requirements presented in section 2 and shows that existing WfMS ap-
proaches use a combination of these algorithms.

3.1 Client/Server Versus Peer-to-Peer

According to the reference architecture of the Workflow Management Coalition [31]
the runtime part of a WfMS consists of workflow enactment service, worklist (i.e.
workflow client applications), and invoked (external) applications. A basic design de-
cision for WfMS is the architecture choice for the workflow enactment service. Most
approaches, for example [3, 6, 8, 11, 16, 24, 26, 27, 22], implement the workflow en-
actment service by a set of workflow servers. Each server can be used by multiple users.
The users’ worklists are clients of these servers. The advantages of this architecture—
the general advantages of client/server architectures—are well known. Well-pro-
grammed client/server architectures provide good performance and scale well [15]. It
has to be emphasized that a client/server architecture does not necessarily imply a cen-
tralized workflow execution, i.e., that a workflow instance and also its subworkflows
are located at the same workflow server. A distributed workflow execution is also pos-
sible in a client/server architecture if a set of servers cooperate and a suitable distributed
execution algorithm is deployed. This cooperation among servers can be implemented
using again client/server protocols (e.g., [26]) or using a peer-to-peer like communica-
tion (e.g., [30]). As a conclusion, the decision whether to use client/server communica-
tion and/or peer-to-peer communication within a WfMS has only limited impact on the
properties of the implemented distributed workflow execution. The (synchronization)

Pros and Cons of Distributed Workflow Execution Algorithms 223

protocols implied by the distributed workflow execution algorithms and workflow
models have the primary influence. For this reason, we do not distinguish client/server
and peer-to-peer communication in the reminder of this paper. For simplicity, we will
call the workflow enactment service components servers, even if they interact using a
peer-to-peer protocol.

3.2 Basic Algorithms

In the following, four basic approaches for distributed workflow execution are present-
ed.

Remote access. The traditional (and trivial) method for distributed workflow execu-
tion is remote access of users, i.e., the users’ worklists, to a workflow server. Pure re-
mote access has been used in early versions of commercial and academic WfMS as the
only means for distributed workflow execution.

Migration of workflow instances. The key problem of the remote access algo-
rithm are the increasing costs for the communication between remote users and the
workflow engine, if they are geographically separated. Migration of workflow instances
is an approach to deal with this problem. The primary idea is to migrate the instance data
of a whole (top-level) workflow instance to the user(s) who currently work with it or its
subworkflows. In other words, the pure migration algorithm moves always the whole
workflow tree.

Partitioning of workflows. Another approach to overcome the costs of remote ac-
cess is partitioning of workflows, strategy is popular in the research community and
used for example in [4, 14, 22]. The basic idea is to break a workflow into parts that are
performed by people located in physical neighborhood. More detailed, a for workflow
specification WF-Spec(wt) = (SubWF(wt), ExtApp(wt), Data(wt), CFDep(wt),
DFDep(wt), RoAss(wt)), the set of subworkflows SubWF(wt) (and also ExtApp(wt)
and RoAss(wt)) is partitioned in n disjoint sets SubWF(wt)i. In general, Data(wt) and
the dependency sets CFDep(wt) and DFDep(wt) cannot be divided into disjoint sets,
because data can be accessed by subworkflows and dependencies in different partitions;
dependencies may also relate subworkflows of different partitions. Fig. 3 shows the par-
titioning of the example workflow introduced in section 2: p1 = {’Order’, ’Customer
invoice’}, p2 = {’Internal trade’}, p3 = {’Stock market trade’, ’Internal Accounting’}.
The EXOR control flow dependency is shared between the three partitions. (1) is shared
between p1 and p2, (2) between p1 and p3.

Subworkflow distribution. Subworkflow distribution [25] is founded on the hier-
archical structure of workflows (section 2.1). The granule of distribution are subwork-
flows. Subworkflow distribution is a generalization of the nested subprocess interoper-
ability variant of the workflow management coalition [31, 33]. In general, if a workflow
instance wi is to be executed using subworkflow distribution, the following algorithm
is applied (assumed a set WS = {ws1, ..., wsn} of workflow servers is available):

224 Hans Schuster

0 1. If wi is created by invocation of a corresponding constructor workflow operation,
select exactly one server s WS and assign wi to this server, i.e., server s per-
forms the constructor, stores State(wi), and will perform all subsequent opera-
tions on wi, and finally the destructor if wi is deleted (section 2.1). Criteria to be
considered for the selection of the server s depend on the concrete implementa-
tion.

2. If wi is a composite workflow, i.e., it has a set SubWF(Type(wi)) = {sw1, ...,
swm} of subworkflows, each swi SubWF(Type(wi)) is processed as a normal
workflow. If swi is to be created (according to the specification of wi), the same
assignment algorithm is used for swi as it has been applied to wi, i.e., swi is also
treated according to step (1), (2), and (3).

3. If wi is an elementary workflow, no additional actions have to be done with re-
spect to distribution.

Subworkflow distribution enables the usage of the father workflow as a single synchro-
nization point for all of its subworkflows. This may cause the workflow servers in-
volved in the subworkflows’ processing to communicate with the father’s workflow
server. Synchronization with the father workflow is needed, if subworkflows are in
competition with each other or if one subworkflow shall be executed by one out of many
agents (section 2.2). Using the father’s workflow server as a synchronization point for
its subworkflows does not mean that there is a central component or a single point of
failure in the overall WfMS configuration, because each workflow instance is sched-
uled separately. As a consequence, the breakdown of a workflow server affects only the
workflow instances it is responsible for and partially their subworkflow instances: sub-
workflows which use the failed workflow server as a synchronization point are affected
if they are to be created or to be destructed. During normal processing, a subworkflow
needs not to synchronize with the father in most workflow models. Since subworkflows
are separate workflows, they can be specified using a different workflow model than the
father’s.

Trading currency

Order Customer invoice

Internal trade

Stock market trade

Clerk of asset
management

Broker

Branch of initiatorInitiator

EXOR

Bank clerk

Internal accounting
Accounting department

Fig. 3 Distributed Workflow with Partitions According
to the Location of Participants

(1)

(2)

Pros and Cons of Distributed Workflow Execution Algorithms 225

3.3 Discussion

In section 2, synchronization of concurrent subworkflows and participants have been
identified as functional requirements on workflow execution. Support for heterogene-
ous environments, scalability, availability (i.e., graceful degradation), and efficiency
are the non-functional requirements to be considered. In this section, we discuss the
properties of the four basic algorithms with respect to these requirements. Tab. 1 sum-
marizes the properties of the algorithms. Assessment of efficiency of the algorithms is
more complicated and therefore analyzed separately in section 4.

A pure remote access approach, i.e., a single centralized WfMS server, trivially ful-
fills both functional requirement classes, because the whole workflow instance infor-
mation is in a single place and accessed by all participants. This algorithm requires a
homogeneous system. It provides only limited availability, because the central server is
a single point of failure and has poor scalability. In particular, it cannot adapt to the en-
terprise structure.

The major drawback of the pure migration algorithm is its lack of support for syn-
chronization both of concurrent subworkflows and actors. Because this algorithm al-
ways migrates the whole workflow tree to a single location, concurrent subworkflows/
participants located in different places cannot be handled. However, this problem can
be overcome by combining migration with remote access. Migration works only be-
tween homogeneous WfMS servers. No inherent limitations exist for scalability and
also graceful degradation is guaranteed, because the failure of a server affects only the
workflow instances of this server. The rest of the system stays operational.

Workflow partitioning divides a workflow’s subworkflows into a set of partitions.
Each of them is assigned to a workflow engine. Concurrent subworkflows can be syn-
chronized by having the responsible engines communicate with each other. Concurrent
participants are not natively supported, because a workflow engine can only be at one
participant’s place. Again, a combination with remote access solves this problem. Scal-
ability and availability are achievable for the same reasons as in the migration algo-
rithm. Heterogeneous environments are not supported, because all WfMS engines have
to use the same workflow model to implement the synchronization protocols between
the workflow partitions.

Similar to workflow partitioning, subworkflow distribution enables synchroniza-
tion of concurrent subworkflows, because the involved subworkflows use the father as

Algorithm
Concurrent
subwork-

flows

Concurrent
participants

Hetero-
geneity Scalability Availability

Remote ✔ ✔ – – –

Migration – – – ✔ ✔

Partitioning ✔ – – ✔ ✔

SubWf Distr. ✔ – ✔ ✔ ✔

Tab. 1 Properties of the Basic Workflow Execution Algorithms

226 Hans Schuster

a synchronization point. The lack of support for concurrent participants, which is here
also due to the fact that a workflow instance can only be at a single location, can be re-
solved by combining this strategy with remote access. Subworkflow distribution can be
used in heterogeneous environments, i.e., subworkflows may be implemented by a dif-
ferent type of WfMS, as long the involved WfMS agree on the basic activity abstraction
introduced in section 2.1. In a subworkflow distribution scheme involved WfMS do not
share any dependency information. Therefore, the synchronization protocol among the
servers is much simpler than for workflow partitioning. Scalability and graceful degra-
dation in case of server breakdowns can also be met with subworkflow distribution for
the same reasons as discussed above.

Tab. 2 depicts how distributed workflow execution algorithms proposed in the literature
are combined from the four basic algorithms identified in this paper. Space limitations
do not allow us to discuss all of these approaches here. We will therefore only point out
some interesting observations: Most of these approaches use remote access to workflow
servers. This is due to the fact that this is the only strategy that implements synchroni-
zation of participants. In addition, it is noticeable that many of the approaches rely on
migration and partitioning, although these algorithms are not suitable for the heteroge-
neous environments usual in today’s enterprises. This is even more surprising, since
dealing with heterogeneity is absolutely crucial for virtual enterprise and electronic
commerce applications. Another special case is BPEL [1]: BPEL is not a general pur-
pose workflow language. It is specialized on fully automated workflows but is does not
implement role assignments. A BPEL process can invoke Web Services and is itself a
Web Service. In addition, a Web Service provides location transparency and may be im-
plemented by a remote server. This way the BPEL language already contains subwork-

Approach Remote Migration Partitioning SubWf
Distr.

Bea WebLogic Integration [8] ✔ (✔)

BPEL [1] ✔

Exotica [3] ✔

Exotica/FMQM [4] ✔

INCA [5] ✔

ADEPT [7] ✔ ✔

Migrating Workflows [10] ✔ ✔

METEOR2 [11] ✔ ✔

METUFlow [14] ✔ ✔

MENTOR [22] ✔ ✔

MOBILE [26, 25] ✔ (✔) ✔

Oracle Workflow [24] ✔ (✔)

WebSphere MQ Workflow [16] ✔ ✔

Tab. 2 Use of Basic Algorithms in Existing WfMS

Pros and Cons of Distributed Workflow Execution Algorithms 227

flow distribution as a model feature. Consequently, BPEL implementations like [23] or
workflow engines that support BPEL like [8, 24] have this property as well.

4 Performance Analysis

In the preceding section, the four basic distributed workflow execution algorithms have
been evaluated with respect to all requirements identified in section 2 except efficiency.
To prepare a performance comparison of these algorithms, a rough estimation of exe-
cution costs for the various algorithms is developed throughout this section. This cost
estimation seems on first sight to be quite superficial. However, a more detailed one
cannot be provided without having additional assumptions regarding the workflow
model, the WfMS architecture, and the underlying communication infrastructure. But
including additional assumptions would compromise the generality of the analysis.
There is a trade-off between generality and accuracy of numbers. The subsequent cost
estimations are based on the following assumptions on the execution of workflows and
communication costs:
0 1. Before any operation on a subworkflow of a workflow instance wi can be per-

formed, the responsible actors according to the role assignment rules
RoAss(Type(wi)) have to be informed by inserting a corresponding entry into
their worklists. Automated subworkflows may be initiated directly by the work-
flow enactment service without human intervention. Therefore, a worklist entry
is not needed in this case.

2. Operations on (sub)workflows—except operations on fully automated
(sub)workflows—are initiated by humans interacting with their worklist.

3. The costs for performing a workflow operation op at a workflow engine are de-
noted t(op).

4. Execution times of external applications are not considered here, because they are
completely application dependent. Our estimation is based only on actions be-
tween components of the WfMS. This is a very restrictive assumption. However
it is justified, because we focus only on the algorithms used within the WfMS. For
the same reason, we consider only workflow-internal data in our analysis. Conse-
quently, we do not consider workflow-external data, e.g., documents that are ac-
cessed using external applications. In certain application scenarios, execution
time for external applications and/or access time to workflow-external data will
outweigh any other costs during workflow execution. However, analyzing this ef-
fect is fully application dependent and not in the scope of this paper.

5. To simplify the cost estimation, we distinguish only two network zones: local net-
works (tclocal) and WANs (tcwan). For the costs, i.e., times, needed for sending a
standard bidirectional message tclocal < tcwan holds.

228 Hans Schuster

4.1 Estimation of Workflow Execution Costs

In this section the execution costs for workflow operations are estimated for the distrib-
uted workflow execution algorithms introduced in section 3.2. Workflow partitioning
and subworkflow distribution are analyzed in combination with remote access, because
only the combined strategy fulfills the model-related requirements (section 3.3). The
discussion of workflow migration is restricted to an estimation of the migration costs.
Since a workflow instance usually will not be migrated for every workflow operation,
the fraction of the migration costs that apply to a single workflow operation is totally
application dependent. Therefore, no reasonable general estimation for the cost of a
workflow operation can be made for workflow migration algorithms without making
additional assumptions.

Remote Access
If a user wants a workflow operation to be executed, remote access causes the following
costs:
0 1. Communication from worklist to server: t1 = c1 * {tclocal, tcwan}; c1 is a constant

capturing the size of a request message.
2. The server performs the operation. This amounts to t2 = t(op). There is no addi-

tional communication effort, because any necessary synchronizations (section
2.2) are performed within the server.

3. A workflow operation may cause modifications of the worklists of several users,
e.g. the termination of a subworkflow may enable subsequent workflows and will
require the removal of its own work item. This amounts to t3 = n * c2 * {tclocal,
tcwan}, if n worklist updates with size c2 have to be performed.

Consequently, a workflow operation causes in the best case a total cost of
tbest = tclocal * (c1 + n*c2) + t(op)

and in the worst case
tworst = tcwan * (c1 + n*c2) + t(op).

Especially if the users are in physical neighborhood to the workflow server, the com-
munication overhead during workflow operations is quite small; this in particular be-
cause no workflow instance state information is transmitted. If subsequent subwork-
flows are to be performed by actors in different physical locations, like in the example
shown in section 2.2, costs increase significantly.

Migration of Workflows
The costs for the migration of a workflow instance wi amount to (x is a placeholder for
local and wan)

tmigration = tcx * (size(State(wi)) +
 size(State of all (transitive) subworkflows(wi))).

If we recall that the state of a workflow (section 2.1) contains a considerable amount of
data, migration is a very costly operation. In most cases size(State(wi)) >> ci will hold.
A migration operation is much more expensive than communicating to a server. There-

Pros and Cons of Distributed Workflow Execution Algorithms 229

fore, migration is only beneficial from the viewpoint of costs, if several subsequent op-
erations are performed at the place where the workflow is migrated to.

Partitioning of Workflows Combined with Remote Access
The sharing of data and/or dependencies among partitions causes the need of informa-
tion exchange during the workflow execution. The following cost estimation for the ex-
ecution of a workflow operation results:
0 1. Communication from worklist to the server responsible for the respective parti-

tion:
t1 = c1 * {tclocal, tcwan}

2. If the operation has impact on a shared dependency and/or data, the server has to
synchronize with the other partitions (assumed number: m). This amounts to
• t2 = c3 * m * {tclocal, tcwan} (c3 is the assumed message size), if no syn-

chronizing dependency (section 2.2) is involved.
• If a synchronizing dependency, e.g., the EXOR dependency in Fig. 3, is in-

volved: t2, best = t2, if no other operation is executed concurrently and
t2, worst = t2 * m, if concurrent operations occur in all affected partitions.

3. The execution of the workflow operation may be split into several parts according
to the partitioning of the workflow specification. But this generally has no note-
worthy impact on the cost of the operation. Therefore this amounts to t3 t(op)
as in the centralized case. The execution time may be even smaller because the
involved servers might work in parallel on their partitions, but this heavily de-
pends on the workflow model.

4. The modifications of the users’ worklists are the same as in the centralized case:
t4 = n * c2 * {tclocal, tcwan}, if n worklist updates with size c2 have to be per-
formed.

The total estimated cost for a synchronizing workflow operation is in the best case
tbest = tclocal * (c1 + c3*m + n*c2) + t(op)
(for non-synchronizing operations: tbest = tclocal * (c1 + n*c2) + t(op))

and in the worst case
tworst = tcwan * (c1 + c3*m2 + n*c2) + t(op)
(for non-synchronizing operations: tworst = tcwan * (c1 + n*c2) + t(op))

This means that partitioning is better than remote access, if the physical proximity of
the partition servers to the users outweighs the additional effort for synchronizing the
partitions. As long as all users eligible to execute a workflow are approximately at the
same location and there are no synchronizing dependencies, this assumption is surely
fulfilled. The example shown in Fig. 3 however, is a hard scenario for workflow parti-
tioning: partition p2 and p3 are at different locations and contain concurrent subwork-
flows, which have to be synchronized. ’Stock market trade’ can be performed by bro-
kers at different geographic locations and communication over WAN cannot be avoid-
ed.

230 Hans Schuster

Subworkflow Distribution Combined with Remote Access
The costs for the execution of a workflow operation using this execution strategy are:

1. Communication from worklist to the server: t1 = c1 * {tclocal, tcwan}.
2. If the operation has to be synchronized with the father, a message is sent to the

father’s server: t2 = c3 * {tclocal, tcwan}; we assume that the size of the synchro-
nization message is comparable to the one used in section .

3. Performance of the operation, i.e., the part at the local server plus the part at the
father, amounts to t3 t(op).

4. The closing modifications of the worklists require t4 = n * c2 * {tclocal, tcwan},
if n worklist updates with size c2 have to be performed.

Consequently, a workflow operation which needs synchronization causes in the best
case a total cost of

tbest = tclocal * (c1 + c3 + n*c2) + t(op)
and in the worst case a total cost of

tworst = tcwan * (c1 + c3 + n*c2) + t(op).
This shows that subworkflow distribution will in general perform better than partition-
ing of workflows for synchronizing workflow operations. If we reach good locality of
the selected workflow servers with respect to the users it will also beat the plain remote
server approach. However, there is one (minor) drawback: need for synchronization in
subworkflow distribution is a property of a workflow operation. These operations will
always cause a message to be sent to the father, even if it is not required because of the
structure of the father workflow. In this case workflow partitioning is better because it
does not send messages for operations within a partition. In the following section, the
performance behavior of the various algorithms is discussed in more detail.

4.2 Discussion

Tab. 3 summarizes the estimated costs of a workflow operations execution for the com-
bination workflow partitioning + remote access, and the combination subworkflow dis-
tribution + remote access. Pure remote access is not included, because this strategy has
severe scalability limitations (section 3.3); Migration is not considered because there is
no application-independent scheme to assign a fraction of the migration costs to a single
workflow operation (see section 4.1).

Algorithm Best case Worst case

Workflow
partitioning +
remote access

tbest = tclocal *(c1 + c3*m + n*c2)+t(op)
(non-synchronizing operations:
tbest = tclocal * (c1 + n*c2) + t(op))

tworst = tcwan *(c1 + c3*m2 + n*c2)+ t(op)
(for non-synchronizing operations:
tworst = tcwan * (c1 + n*c2) + t(op))

Subworkflow
distribution +
remote access

tbest = tclocal * (c1 + c3 + n*c2) + t(op) tworst = tcwan * (c1 + c3 + n*c2) + t(op)

Tab. 3 Summary of costs per workflow operation

Pros and Cons of Distributed Workflow Execution Algorithms 231

If we look at the costs depicted in Tab. 3, it is obvious that both variants differ only
in the effort for synchronizing the workflow partitions in the first case and synchroniz-
ing with the father in the second case. For workflow partitioning, this results to the term
c3*m (best case) or c3*m2 (worst case) if synchronization is needed, otherwise the ad-
ditional cost is 0. Subworkflow distribution has a constant distribution overhead of c3
for operations that potentially need to be synchronized, like the start operation of a
workflow. In contrast to workflow partitioning, in subworkflow distribution a server
performing an operation on a subworkflow cannot decide whether it needs synchroni-
zation because the server has no knowledge of the father’s dependencies.

Fig. 4 illustrates the trade-off between subworkflow distribution and workflow par-
titioning. For simplification, we estimate the expected cost for an operation using the
partitioning strategy is: p * ((1-q)*c3*m + q*c3*m2) where p is the fraction of workflow
operations that need synchronization, q is the probability for the worst case to happen,
and m is the number of partitions to be synchronized. I.e., we neglect the cases where
the cost for partitioning is between the best and the worst case. Nevertheless, Fig. 4
shows that the cost for workflow partitioning grows enormously, if the workflow spec-
ification requires a lot of synchronization either because of synchronizing control flow
or because subworkflows concurrently access data of the father workflow.

5 Related Work

Although many commercial and academic WfMS deal with distribution, there is only
few work that analyzes distribution strategies in some detail and/or compares different
strategies for distributed workflows execution. [7], [19], and [21] concentrate on the be-

Fig. 4 Estimated Cost per Workflow Operation in Specific Application Situations

Fraction p of workflow opera-
tions needing synchronization

Cost

c3

0 1

Subworkflow
distribution

m = 2, q = 0.1
m = 2, q = 0.05

m = 3, q = 0.1
m = 3, q = 0.05

m = 4, q = 0.1
m = 4, q = 0.05

232 Hans Schuster

havior of an algorithm deployed in a particular WfMS; [21] and [6] discuss and com-
pare the properties of a variety of algorithms for distributed workflow execution. In the
following, these papers are discussed in more detail. Other approaches [3, 16, 4, 5, 7,
10, 11, 14, 22, 26, 25] that deploy distributed workflow execution but do not provide an
analysis have been related to the four basic algorithms in section 3.3.

The work in [7] is based on a workflow migration algorithm and deals with over-
loading of subnets by a WfMS. Workflow instances are migrated between servers lo-
cated in different subnets to balance load. The approach is tightly coupled with the as-
sumed ADEPT workflow model. Alternative workflow execution models are not con-
sidered.

[22] shows a detailed performance analysis of the distributed execution algorithm
for workflows in the MENTOR WfMS, which is based on partitioning of workflows.
Several alternatives for synchronizing the workflow partitions are discussed. However,
the result are tightly coupled with the activity and state chart based workflow model of
MENTOR. Other distributed execution models besides partitioning are not discussed.

Several architectures to implement the METEOR workflow model are presented in
[21], starting with a centralized architecture and ending with a fully distributed archi-
tecture. The properties of these architectures are discussed in detail. A comparison of
the approaches based on a cost estimation is not provided. In addition, the impact of the
METEOR workflow model on the behavior of the architecture variants has not been
considered in the discussion.

A comprehensive classification of distributed WfMS architectures and a simulation
of their behavior is presented in [6]. In contrast to our approach, [6] does not provide
basic algorithms from which the existing algorithms can be derived by combination.
The simulation is based on particular workflow examples and focuses on the resulting
load in the WfMS components. The impact of workflow model on the performance of
the algorithms not covered.

6 Conclusion

Distributed workflow execution is a mandatory feature for WfMS. Based on a compre-
hensive list of requirements which have to be fulfilled by a distributed WfMS we have
introduced four basic strategies for the distributed workflow execution. It turns out that
subworkflow distribution is an algorithm that is best for general-purpose WfMS with a
workflow model containing modeling primitives that require the synchronization of
subworkflows, like the MOBILE workflow model [17]. Application-specific WfMS or
workflow models that do not contain synchronizing primitives, e.g., WebSphere MQ
Workflow’s workflow model [16] and email-based workflow approaches, can be enact-
ed more efficiently, if a partitioning strategy is deployed for the workflow execution.
However, if a WfMS installation is used in a heterogeneous environment subworkflow
distribution is a must, because this is the only distributed workflow execution algorithm
that can tolerate heterogeneous workflow servers.

Pros and Cons of Distributed Workflow Execution Algorithms 233

References

[1] Andrews, T., Curbera F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Lan-
guage for Web Services. Version 1.1. 2003

[2] Alonso, G., Agrawal, D., El Abbadi, A., Mohan, C.: Functionality and Limitations of Cur-
rent Workflow Management Systems. In: IEEE Expert, Special Issue on Cooperative In-
formation Systems, 1997

[3] Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Günthör, R., Mohan, C.: Failure
Handling in Large Scale Workflow Management Systems. Technical Report, IBM Al-
maden Research Center, 1994

[4] Alonso, G., Mohan, C., Günthör, R., Agrawal, D., El Abbadi, A., Kamath, M.: Exotica/
FMQM: A Persistent Message-Based Architecture for Distributed Workflow Manage-
ment. In: Proc. IFIP Working Conference on Information Systems for Decentralized Or-
ganzations, Trondheim, 1995

[5] Barbara, D., Mehrotra, S., Rusinkiewicz, M.: INCAs: Managing Dynamic Workflows in
Distributed Environments. In: Journal of Database Management, Special Issue on Multi-
databases, 7(1), 1996

[6] Bauer, T., Dadam, P.: Verteilungsmodelle für Workflow-Management-Systeme - Klassi-
fikation und Simulation. Ulmer Informatik-Berichte, Nr. 99-02, Universität Ulm, 1999

[7] Bauer, T., Reichert, M.: Dynamic Change of Server Assignments in Distributed Workflow
Management Systems. In: Proc. 6th Int’l Conf. Enterprise Information Systems
(ICEIS’04), Volume 1, Porto, 2004

[8] Bea Weblogic Integration. Version 8.1, http://www.bea.com/framework.jsp?CNT=in-
dex.htm&FP=/content/products/integrate/, 2005.

[9] Bußler, C.: Organisationsverwaltung in Workflow-Management-Systemen. Dissertation,
Universität Erlangen-Nürnberg, 1997

[10] Cichocki, A., Rusinkiewicz, M.: Migrating Workflows. In: Dogac, A. ; Kalinichenko, L. ;
Ozsu, T. ; Sheth, A. (Eds.): Advances in Workflow Management Systems and Interopera-
bility. NATO ASI Series F, Springer Verlag, 1998

[11] Das, S., Kochut, K., Miller, J., Sheth, A., Worah, D.: ORBWork: A Reliable Distributed
CORBA-based Workflow Enactment System for METEOR2. Technical Report UGA-CS-
TR-97-001, Department of Computer Science, University of Georgia, 1997

[12] Deiters, W., Gruhn, V.: The FUNSOFT Net Approach to Software Process Management.
In: International Journal of Software Engineering and Knowledge Engineering, 4, 1994

[13] Georgakopoulos, D., Hornick, M.F., Shet, A.: An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. In: Distributed and Par-
allel Databases, 3, 1995

[14] Gokkoca, E., Altinel, M., Cingil, I., Tatbul, E.N., Koksal, P., Dogac, A.: Design and Im-
plementation of a Distributed Workflow Enactment Service. In: Proc. Int. Conf. on Coop-
erative Information Systems, Charleston, 1997

[15] Gray, J., Edwards, J.: Scale Up with TP Monitors. In: Byte, April 1995
[16] IBM WebSphere MQ Workflow. http://www-306.ibm.com/software/integration/wmqwf/,

IBM, 2005
[17] Jablonski, S., Bußler, C.: Workflow Management - Modeling Concepts, Architecture and

Implementation. International Thomson Computer Press, 1996

234 Hans Schuster

[18] Jablonski, S., Böhm, M., Schulze, W. (Hrsg.): Workflow-Management: Entwicklung von
Anwendungen und Systemen - Facetten einer neuen Technologie. dpunkt Verlag, 1997

[19] Jin, L., Casati, F., Sayal, M., Shan, M.-C.: Load Balancing in Distributed Workflow Man-
agement System, Proceedings of the 2001 ACM symposium on Applied computing, 2001

[20] Kamath, M., Alonso, G., Günthör, R., Mohan, C.: Providing High Availability in Very
Large Workflow Management Systems. In: Proc. 5th Int. Conference on Extending Data-
base Technology, Avignon, 1996

[21] Miller, J.A., Sheth, A.P., Kochut, K.J. ; Wang, X.: CORBA-Based Run-Time Architec-
tures for Workflow Management Systems. In: Journal of Database Management, Special
Issue on Multidatabases, 7(1), 1996

[22] Muth, P., Wodtke, D., Weissenfels, J., Kotz Dittrich, A., Weikum, G.: From Centralized
Workflow Specification to Distributed Workflow Execution. In: JIIS - Special Issue on
Workflow Managament, 10(2), 1998

[23] Oracle BPEL Process Manager. http://www.oracle.com/appserver/bpel_home.html, Ora-
cle, 2005

[24] Oracle Workflow. Developer’s Guide, Version 2.6.3, http://download-west.oracle.com/
docs/cd/B14117_01/workflow.101/b10283/toc.htm, Oracle, 2005

[25] Schuster H.: Architektur verteilter Workflow-Management-Systeme. DISDBIS 50, Infix,
1998

[26] Schuster, H., Neeb, J., Schamburger, R.: A Configuration Management Approach for
Large Workflow Management Systems. In: Proc. Int. Joint Conference on Work Activities
Coordination and Collaboration (WACC’99), San Francisco, February, 1999

[27] Schuster, H., Neeb, J., Schamburger, R.: Using Distributed Object Middleware to Imple-
ment Scalable Workflow Management Systems. In: Journal of Integrated Design & Proc-
ess Science, 1999

[28] Sheth, A., Kochut, K.J.: Workflow Applications to Research Agenda: Scalable and Dy-
namic Work Coordination and Collaboration Systems. In: Proc. of the NATO ASI on Work-
flow Management Systems and Interoperability, Istambul, 1997

[29] Singh, M.P.: Formal Aspects of Workflow Management - Part 1: Semantics. Technical Re-
port, Department of Computer Science, North Carolina State University, June, 1997

[30] Weissenfels, J., Muth, P., Weikum, G.: Flexible Worklist Management in a Light-Weight
Workflow Management System. In: Proc. of the EDBT Workshop on Workflow Manage-
ment Systems, Valencia, Spain, March 1998

[31] Hollingsworth, D.: Workflow Management Coalition The Workflow Reference Model.
Workflow Management Coalition, Document Number TC00-1003, 1994

[32] Hollingsworth, D.: The Workflow Reference Model: 10 Years On. Workflow Manage-
ment Coalition, 2004

[33] Workflow Management Coalition Workflow Standard - Interoperability Abstract Specifi-
cation. Workflow Management Coalition, Document Number WFMC-TC-1012, Version
1.0, 1996

[34] Workflow Management Coalition Terminology & Glossary. Workflow Management Coa-
lition, Document Number WFMC-TC-1011, Document Status - Issue 2.0, 1996

[35] Workflow Management Coalition Workflow Client Application (Interface 2) Application
Programming Interface (WAPI). Workflow Management Coalition, Specification Docu-
ment Number WFMC-TC-1009, Version 2.0e (Beta), October, 1997

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 235-254, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Business-to-Business

Integration Technology

Christoph Bussler

National University of Ireland
Digital Enterprise Research Institute (DERI)

chris.bussler@deri.org

Abstract. Business-to-Business (B2B) integration technology refers to soft-
ware systems that enable the communication of electronic business events
between organizations across computer networks like the Internet or special-
ized networks like SWIFT [19]. A typical example of business events is a
create purchase order sent from a buyer to a seller with the intent that the
seller delivers the ordered products eventually, or a post invoice sent from a
supplier to a buyer with the intent that the buyer fulfills his obligation to pay
for delivered products. Business events carry business data as such and the
sender’s intent about what it expects the receiver to do. As business events
are mission critical for the success of private, public, and government organ-
izations, their reliable and dependable processing and transmission is para-
mount.
Database technology is a platform technology that has proven to be reliable
and dependable for the management of large sets of dynamic data across a
huge variety of applications. In recent years, functionality beyond data man-
agement was added to database technology making it a feasible platform for
business event processing in addition to data processing itself. New function-
ality like complex data types, audit trails, message queuing, remote message
transmission or publish/subscribe communication fulfills basic requirements
for business event processing and are all relevant for B2B integration tech-
nology.
This contribution investigates the use of database technology for business
event processing between organizations. First, a high-level conceptual model
for B2B integration is introduced that derives basic business event processing
requirements. A B2B integration system architecture outline is provided that
defines the B2B integration system boundaries, before specific database
functionality is discussed as implementation technology for business event
processing. Some future trends as well as some proposals for extended data-
base functionality is presented as a conclusion of this chapter.

236 Christoph Bussler

1 Business Events

The core concept of B2B integration is the business event. It is the main element of con-
cern and all other concepts are subordinate to it. An organization that communicates
with another organization has to define which business events are communicated and in
which order they are sent by it or are expected to be received by it from the partner or-
ganization. The business event is therefore the main carrier of the communication se-
mantics between organizations.

A B2B integration architecture is the system conception for executing business
event communication between organizations over networks. It also has to connect to the
organization internal business application systems. This is important, because business
application systems manage the business data that are communicated through business
events by the B2B integration technology.

This initial section introduces both, the concepts of B2B integration with business
events as the main concept as well as a B2B integration architecture overview.

1.1 Concepts

The main concepts are introduced in this section in more detail. Based on these concepts
the B2B integration architecture is introduced that will be the basis for discussion how
database technology can implement its components. In [3], the conceptual model of
B2B integration is described in a lot more detail and so is the corresponding B2B inte-
gration architecture.

Business Event. The main concept of B2B integration is the business event which
has a name, an intent, and carries business data. For example, create purchase order is
a name of a business event. That name by itself indicates the intent create and the busi-
ness data that are carried by it purchase order. When defining a business event, it is
mandatory that all necessary business data are included so that the recipient of the busi-
ness event can fulfill the intent by executing an appropriate business function.

For example, in case of creating a purchase order the intent of the buyer is to receive
certain goods by a certain time for a specific price and a given quality, amongst other
properties. The supplier executes a business function that either determines that it can
deliver the products as specified by the create purchase order event, that it can deliver
the ordered products with different parameters from those defined (for example, the de-
livery will be later as requested), or it cannot deliver those at all. Whatever the outcome
of the business function is, it returns an event notify purchase order acknowledgement
that specifies the outcome of the business function for the buyer. The intent of this busi-
ness event depends on the outcome. If the supplier can ship the products as ordered by
the buyer, then this is a true notification. And the expectation is, that the products are
going to be built and delivered as specified. If the outcome is that in principle the prod-
ucts can be delivered, however, with different parameters, then the buyer is expected to
agree to this change or to disagree with it. If the outcome is that the supplier cannot de-

Business-to-Business Integration Technology 237

liver at all, the intent is again that of a notification. Implicitly, however, the buyer has
to look for an alternative supplier.

It is important to note at this point that a business event is different from a message.
A message is a particular data structure with an associated behavior defined by a queu-
ing system [7]. The basic behavior of messages is enqueue, dequeue and lookup. A mes-
sage does not have an intent. However, a messaging system can be used as an imple-
mentation technology to implement certain aspects of a business event. This is dis-
cussed in section 3 in more detail.

Another important note is that in real implementations of business data sometimes
the intent is not explicitly defined, but has to be implicitly derived from the business
data itself. For example, the existence of a purchase order number in a purchase order
implies that this is an update of a purchase order rather then the creation of a new pur-
chase order. However, for the purpose of the discussion in this chapter, this difference
is not essential and therefore not further called out in the following discussion.

Party. As the purchase order example has shown, the involved organizations are iden-
tified organizations and not anonymous organizations. For example, a buyer directs the
business event to a specific supplier and the supplier responds back to the buyer that
sent the business event. A business event, therefore, is directed at one target organiza-
tion (called party in the following). A party is an organization that can send and receive
business events. In general, a party does not send and receive arbitrary business events
but only those that are vital and important for its business. For those business events that
it receives it implements the intent in form of a business function.

A business event can be directed at several identified parties. For example, a request
for quotation is sent to a set of suppliers with the intent that they respond with quotes.
In this case, the business event is sent to each of the named suppliers and each of the
suppliers can send back a quote if it is interested in bidding for the potential order. A
consequence of a quote might be the receipt of the subsequent create purchase order,
if the quote was the best from the viewpoint of the buyer.

Because a business event is sent by a party, it has a particular party as source. In
summary, each business event has one source party and one or many target parties.

Process Management. As above examples of a purchase order or quotation process
have shown, there is a business event conversation going on between two or more par-
ties. It is important that this conversation follows particular rules so that the conversa-
tion terminates successfully. The rules are that each party needs to send the business
events that the other party expects and that the intent is executed correctly. This conver-
sation itself has to be modeled and the means for this is a choreography.

A choreography of a party defines the business events it is going to send, the busi-
ness events that it is going to expect and their relative order or sequence. Because each
party has a choreography, it can be determined whether or not the choreographies match
and the conversation derives to a successful end. A perfect match is given if all possible
conversations of the involved choreographies terminate. Each possible execution path
has to match in the sense that all business events sent by a party have to be received by
the other party and vice versa. If there is a business event sent, but the other party does

238 Christoph Bussler

not expect it, then this is the case of a mismatch and the choreographies will not work
(at least not for this case).

For example, after sending a create purchase order event a notify purchase order
acknowledgment event is expected. While this is a simple conversation, the buyer and
the supplier both have a choreography. The buyer sends a create purchase order first
and then expects a notify purchase order acknowledgment. The supplier has the com-
plementary choreography. First, it expects a create purchase order and after executing
the appropriate business function returns a notify purchase order acknowledgment.

While the choreography defines the conversation on a per-party basis, sometimes
more then one party is involved overall. In this case, another concept applies that deals
with more than one party. For example, if the notify purchase order acknowledgment
event says that the supplier will not deliver the products; another supplier has to be
found subsequently. In general this finding of a new supplier requires communication
with other parties through appropriate choreographies. That overall process involving
several choreographies is implemented by orchestration.

Orchestration implements business logic by defining how several parties are in-
volved in the communication, each with its own choreography. Orchestration ’orches-
trates’ several parties in order to achieve a final outcome.

As a note, it is important to point out that application systems are in general the lo-
cation of business logic. Business events that are sent out by a party usually originate in
application systems and business events that are received are usually forwarded to ap-
plication systems. This requires the B2B integration system to connect to the applica-
tion systems in order to make this communication happen. In section 2.1, we discuss the
connectivity with application systems in more detail and show how this is achieved in
general.

Data Mediation. When parties are communicating with each other by means of busi-
ness events they basically send data to each other. In the general case, each party has its
own conceptualization of its business data. For example, a buyer identifies its products
and product parts in its way. This might include part numbers and other identifiers. A
supplier does the same, it defines the parts it can supply in its way. When a buyer orders
parts, the question arises how the buyer communicates with the seller. Does it use its
own way of identifying the supplier’s parts or the way the supplier identifies its parts?
When there are different conceptualizations, a mismatch exists that requires resolution.

The concept that achieves this resolution of data mismatch is called data mediation.
Data mediation defines the transformation rules necessary to ensure that the source and
the target party send and receive business events in their conceptualization. This is
achieved by intercepting each business event sent by the source party and transforming
it into the business event as understood by the target party. In the easiest case, both are
identical and this is possible, if source and target party have the exactly same concep-
tualization. If they differ, then the transformation rules ensure that the difference is
bridged.

For example, the source party might have three different attributes to identify a part
that it wants to order from a supplier. The supplier, however, has only one attribute con-

Business-to-Business Integration Technology 239

taining the same information. In order to establish semantic equivalence, the transfor-
mation rules have to take the three attributes and derive the value of the one attribute.
After this is done the buyer and supplier semantically understand each other, while the
data representations in the business events are different.

The conceptualization of a party is called the internal conceptualization and the data
is in the internal data format. The conceptualization of a remote party is called external
conceptualization and the data format is called the external data format. Transformation
rules therefore ensure that there is a way to transform the internal to the external data
format without changing the semantics of the data in case of an outbound event (i.e.,
one that is sent out to an organization). In the case of an inbound event, the opposite
transformation happens.

External data formats are often implemented by B2B standards like EDI [2] or Ro-
settaNet [17]. In case a party uses a B2B standard, it decided not to define and imple-
ment its own proprietary format, but to follow a standardized one that is shared across
many organizations. While B2B standards play an important roles in the business world
[4] they are not relevant for the subsequent discussion as the B2B integration concepts
and architecture can deal with any format, proprietary or standardized.

Process Mediation. As data formats can mismatch between parties, so can choreog-
raphies. Two choreographies might not be directly complementary in themselves. For
example, a party might send back one notify purchase order acknowledgment while the
other party expects one for each line item in the original create purchase order. There
is no direct match; however, in principle all the data necessary for a direct match are
being communicated. In this example, it is possible that a mediator splits the one notify
purchase order acknowledgment business event into as many as there are line items. Af-
ter this transformation the choreographies match.

This transformation is called process mediation as the number and order of business
events are changed between two choreographies in order to make them match. The con-
cept of process mediation is fairly new and not a lot of research results are available yet.
Therefore, it will not receive further discussion in the reminder of the chapter.

1.2 Non-functional Requirements

In addition to the concepts that define the functionality of a B2B integration system,
there are non-functional aspects. These are listed briefly in the following.

• Status. At any point in time it must be possible to determine the status of a business
event as well as all other business events related to it through choreography and or-
chestration, i.e., the current state of execution.

• History. At any point in time it must be possible to see the history of the execution
up to a given point. This is interesting in order to figure out the path of execution one
or several business events took. Sometimes the history allows determining the cause
of failures after they happened as it can show what data has been sent around and
which parties have been involved.

240 Christoph Bussler

• Security. Security is an important aspect of B2B integration. Communication must
be secret between parties so that no unauthorized and unauthenticated party can par-
ticipate or even just listen to the data sent. In addition, non-repudiation, authentica-
tion, as well as authorization play a big role in system security.

• Business Data Context. When business events are executed, application systems ac-
cess business data. In order to after-the-fact of execution understand decisions that
have been taken it is necessary to capture the state of business data at that point in
time. This means that for example exchange rates, or schedules are available or re-
corded into history so that they can be accessed later on for inspection.

• Reporting. Reporting is an important functionality for organizations. All the history
data of a B2B integration system must be available so that reports like the number of
business events processed or the number of failures encountered can be established
and executed.

1.3 System Overview

B2B integration technology is the enabler of communication between organizations. In
addition, it needs to extract and insert business events into application systems. Fig. 1
shows the overall system placement of application systems, B2B integration systems,
organizations, as well as networks in order to provide an overview.

An organization has a B2B integration system for communication and at least one
application system. Both are integrated as the vertical line in the figure indicates. Or-
ganizations communicate business events over networks by means of their B2B inte-
gration systems. A network is represented as a vertical bar and the fact that the two B2B
integration systems communicate is indicated by the vertical line between them that
crosses the network.

This system arrangement is assumed throughout the remainder of this chapter.

Fig. 1 Overall System Placement

B2B
Integration

System

Network

B2B
Integration

System
Application

System
Application

System

Organization 1 Organization 2

Business-to-Business Integration Technology 241

2 B2B Integration Technology Architecture

This section introduces a generic and common software architecture for B2B integra-
tion systems. The architecture is generic in the sense that it establishes a generic system
boundary. It defines the input and output behavior of the system from an architectural
viewpoint. Furthermore, it contains all necessary internal software components in order
to address all the business event execution requirements outlined in the previous sec-
tion.

The generic system architecture abstracts from specific architecture choices and im-
plementation decisions that the various existing vendor products as well as research
prototypes have had to make. It does not make any implementation-specific prescrip-
tions. These concrete B2B integration systems are usually implemented with a specific
implementation philosophy in mind and, hence, they might vary significantly in imple-
mentation details. On a more abstract level, however, their architecture and system
boundaries are very similar to the presented generic and common software architecture.
It therefore can represent them accurately.

This section will start with defining the B2B integration system boundary in a de-
fined architecture context. Afterwards the architecture components are introduced fol-
lowed by a discussion of how the architecture executes specific business events involv-
ing the various architecture components.

2.1 Architecture Context

B2B integration technology is not a stand-alone software system. Instead, it interfaces
with two distinct type of systems, namely data communication software and application
systems. Data communication software supports the remote communication over data
networks and, through it, B2B integration technology supports the data communication
with remote organizations. Application systems like Enterprise Resource Planning
(ERP) systems manage enterprise data. B2B integration technology must interface with
application systems for extracting data that require transmission as well as inserting
data after receipt from other cooperating organizations.

Each piece of communication software and each application system in general has
a different application programming interface for accessing it. For example, some pro-
vide a set of methods, some a queuing interface, some a standard interface following the
J2EE Connector Architecture [9] and so on. Interfacing with communication software
as well as application systems means therefore that for each new network and each new
application software an adapter has to be built that bridges their interface with the inter-
faces of the B2B integration technology. This is not a once-off development for all ap-
plication systems or all communication software, but requires a special implementation
for every new communication software or application system that needs to be integrat-
ed.

From an architectural viewpoint the question arises whether these adapters that are
part of the overall context are considered part of the overall B2B integration system ar-

242 Christoph Bussler

chitecture or whether they are outside the architecture and are seen as components ex-
ternal to it (and consequently are not part of the architecture discussion).

An argument to exclude them is that these are ’auxiliary’ components that do not
provide business event functionality itself but provide infrastructure to connect to ex-
isting software components required for communication with networks and application
systems. Furthermore, depending on the number of networks and application systems,
the number of these auxiliary components can be quite high causing the architecture to
expand significantly over time.

While these are compelling arguments to exclude adapters, a different choice was
made. In the following they are included in the architecture. The reason for including
them is that database technology exists that can implement this adaptation functionality
for specific cases of application systems and communication networks directly. In order
to be able to use this native database functionality, these components are included in the
B2B integration technology architecture.

2.2 System Boundary

B2B integration systems in general provide two different types of functionality. One is
design-time functionality and the other one is run-time functionality. Both of these re-
quire different application programming interfaces as the objects that are passed
through these interfaces are different: types and instances, respectively. The design-
time interface and the run-time interface together define the overall B2B integration
system boundary.

The design-time interface provides functionality for managing the definition data
(types) of B2B integration concepts as introduced in section 1. For example,

• creating a new business event definition
• deleting an existing business event definition
• updating an existing business event definition or
• creating a new version of an existing business event definition

are all part of the design-time interface. Fig. 2 shows an abstraction of the design-time
interface of the B2B integration system. The B2B integration system is represented as
a self-contained ’box’ that contains all functionality including any data storage facility
necessary. The design-time interface is represented as a black bar. It provides the appli-
cation programming interface (API) that can be accessed by various modeling user in-

Fig. 2 Design-Time Interface

B2B
Integration

System

Design-time interface

Business-to-Business Integration Technology 243

terface tools in order to provide designers an appropriate access to the B2B integration
system.

The run-time boundary of the B2B integration system is multi-layered. The inner
boundary is providing and receiving business event instances. The outer boundary is
communicating to the APIs of the application systems and the communication compo-
nents for the various networks. The object instances of the outer boundary are defined
by the communication software or application systems that are connected to the B2B
integration technology through adapters. Fig. 3 shows the graphical representation (that
also includes the design-time interface for clarification). The components between the
inner and outer boundary are adapters. By convention, the left side of the graphical rep-
resentation is connecting to application systems whereas the right side is connecting to
other organizations via networks. This is a convention in order to keep the interpretation
of the figures uniform. In consequence, application adapters and communication com-
ponents are shown on the left and right side, respectively.

By implication, application adapters ’mediate’ between the application system in-
terface and the business event interface. In analogy, communication adapters are medi-
ating between the business event interface and the communication software interface
communicating data as required by remote organizations. In both cases, ’mediation’
means that syntactical serialization might have to be rewritten, for example, from a Java
API of an application system to an XML representation of business event instances. On
the network communication side, it might be a mediation for example between the
XML serialization of the business event instances to EDI [2].

Fig. 3 Run-Time Interfaces, Inner and Outer Boundary

B2B
Integration

System

Design-time interface

Run-time: inner boundary

Run-time: outer boundary

Business event instances

Communication dataApplication system data

Communica-
tion Adapter

Communica-
tion Adapter

Application
Adapter

Application
Adapter

244 Christoph Bussler

As a note, it is important to point out that the database as a component is considered
to be within the system boundary of the B2B integration system. In many architecture
representations, databases are placed outside the system boundary. However, here the
view is supported that the database technology is yet another component in the set of all
components of the B2B integration system. The architectural components are discussed
next.

2.3 Architecture Components

The B2B integration system architecture is a layered architecture. Each layer provides
a specific functionality the layer above it can use to implement its functionality. The
layers and their architectural components are shown in Fig. 4 and discussed next.

• Layer 1. This layer consists of two components, an instance operational data store
and a type definition data store. The instance operational data store stores all instance
data like business event instances, process instances, and so on. It is optimized for
instance processing in the sense that throughput and performance are key criteria.
The definition data store contains the definition data necessary to run the system.
This includes business event definitions, process definition, party definitions, and so
on. Both stores provide of course basic functionality like transactions, save points,
backup, and retention. The definition data store might in addition provide versioning
and variant management functionality and design staging, i.e., functionality especial-
ly relevant for design activities.

• Layer 2. This layer consists of components that implement the specific B2B func-
tionality. This includes a business event manager, a data mediator, a process media-
tor, process management for choreography and orchestration as well as party man-

Fig. 4 Architecture Layers

Instance
operational
data store

Layer 1
Type

definition
data store

Business
event

manager

Data
mediator

Process
mediator

Layer 2

Process
manager

Party
manager Adapter

Component
managerLayer 3

Business-to-Business Integration Technology 245

agement. These components interact with layer 1 in order to provide their function-
ality. For each concept described in section 1.1, a separate component is introduced
that encapsulates the specific functionality. Adapters fall also in this layer and as dis-
cussed previously, the number of adapters depends directly on the number of net-
works and application systems.

• Layer 3. This layer introduces a management component that invokes the compo-
nents of layer 2 in the appropriate order in order to execution business events. It pass-
es context and identification information around in order to ensure proper relation-
ship between the data in processing.

2.4 Execution Model

The execution model of the B2B integration system architecture is fixed in the sense
that all business events are executed in the same way and therefore all components are
invoked in the same order. Data enters and leaves the system through adapters to either
application systems or networks. Adapters establish the outer system boundary.

The inbound processing works as follows. When data comes in, it first is checked
whether or not the source and target parties are known and correct by invoking the party
manager component. Afterwards the data mediator and the process mediator is invoked
in order to derive to the correct business events. This establishes the inner system
boundary.

At this point, the process manager advances any choreography and/or orchestration
that is under execution in order to establish that the business event matches. At this
point, a correct business event has been received and it now has to be passed on to a
network or an application system depending on the target party.

The outbound processing works very similar. In order to send out a business event
the same functionality as in the inbound case is invoked, however, in the opposite order.
First, the process manager advances choreographies and orchestration as needed. Then
data and process mediators are invoked in order to transform the business event into the
external format. The transformed data is passed on to the appropriate adapters as re-
quired to communicate with the target party.

3 Database Support for B2B Integration Technology

Database technology provides quite an impressive array of functionality today that can
implement directly some of the components outlined in the previous section. This is
shown in the following by mapping components of the generic and common architec-
ture components to database technology functionality.

However, some of the functionality required for business event processing cannot
be directly implemented with today’s database technology and a discussion follows that
outlines the missing functionality. If this functionality were available, the complete

246 Christoph Bussler

business event processing could be directly implemented in a database and the complete
B2B integration technology could be mapped to a pure database implementation.

3.1 Component Implementation

This section lists the components of the B2B integration system as introduced in section
2.3 that can be implemented directly with native database functionality. A brief discus-
sion is included to show a possible concrete way. As it will turn out, some of the data-
base functionality can be used for the implementation of several different components.
Components that cannot be implemented with native database technology directly or
only in part are still mentioned for completeness reasons.

Instance Operational Data Store and Type Definition Data Store. These
two components are ’classical’ database functionality: processing large sets of data. For
instance data as well as type data, a data model has to be developed and then implement-
ed as a database schema. The type definition store typically holds the definition of busi-
ness events, choreographies, orchestrations, and all the other definition data that is re-
quired to establish a complete definition of B2B integration, including the identification
of the participating organizations.

The instance operational data store holds the instance of the concepts like business
events or choreographies. As the execution progresses the instance data is updated ac-
cordingly. In addition, this store needs to provide, besides the current execution status,
also the history of all executions so that at any point in time it is possible to query all
past executions. Again, native database technology can capture history through various
means like, for example, avoiding update in place but additive status change. Whenever
an instance changes, instead of changing the data representation in place, a new entry is
created with the new status data. An alternative way are triggers that write history in-
formation on updates of the instance data.

Business Event Manager. The business event manager is implementing the busi-
ness event functionality. Business events are received as well as sent by the B2B inte-
gration technology. This behavior can be implemented with queues where business
events are represented as messages. A receipt of a business event results in an enqueue
of an equivalent message, whereas the sending of a business event is the result of a de-
queue. In this sense, the implementation can be achieved with native database function-
ality [13].

Component Manager. The component manager in layer 3 is steering all the compo-
nents of layer 2 of the architecture in such a way that they are invoked in the order nec-
essary to execute business events. The component manager has to pass identifiers to the
components in order for them to retrieve the appropriate instances from the instance op-
erational store. These instances are then executed on, whatever the component requires
to do. Once a component finishes its task, it reports back to the component manager that
it is done and it also returns relevant identifier information. This is then picked up by

Business-to-Business Integration Technology 247

the component manager to make a decision which component has to work next. This is
a ’classical’ processing cycle that can be found in many architectures.

Implementing this invocation sequence can be achieved by using queues [13] com-
bined with publish/subscribe technology [15]. Whenever a component is done with
processing, it puts a message on a queue with the corresponding identification data in
the message body. Components that subsequently have to process that data next sub-
scribe to these messages. Once the subscription applies the appropriate component is
notified, it then can dequeue the message and start processing. After processing the re-
sult is put on the queue as a message again and the cycle starts over.

At any point in time the messages on the queue reflect the overall system processing
status. If the messages are retained, the temporal processing history can be retrieved and
analyzed. As queues are persistent and transactional, no further effort has to be spent
making the system reliable.

Adapter. Compared to the components discussed so far, adapters are not that straight
forward to implement with native database technology. The reason is that interfaces of
software components can follow many different approaches and not all of them are
known to a database. For example, if an application system follows the J2EE Connector
Architecture standard [9] then the database does not have a chance to connect to this
natively as it does not implement this standard. However, there are some interfaces that
a database can connect to directly and those are discussed in the following. This is an
example where database technology can implement a component of the B2B integration
architecture to some extent, but not completely. The missing required functionality in
this case has to be implemented outside the database management system.

• Messaging interface. If the application system or communication software compo-
nent has a messaging interface, then the database can directly enqueue or dequeue
from the queues provided by the application system or communication software
component. A native implementation is achieved easily here.

• Messaging communication. In the special case where the remote organization imple-
ments a message queue, the database can connect directly to it over the network. No
adapter is required in this case and the native database functionality covers the com-
plete communication functionality [13].

• Interface tables. Some systems to be integrated implement their interface as so-called
interface tables. Interface tables belong to the database schema of the system to be
integrated and contain the data that the system provides and provide a place where
data can be put to pass it to the system. In this case, native querying functionality is
sufficient to connect and this way the B2B integration system can adapt natively.

• Stored procedures. Some systems that require integration provide stored procedures
as interfaces. The communication with the system is achieved by the B2B integration
architecture calling stored procedures provided by the system to be integrated. Be-
cause a database can call stored procedures this is straightforward to implement.
In summary, there are several possibilities for a database to connect to application

systems or communication software using database native functionality. This is espe-

248 Christoph Bussler

cially simple if those use the same database technology from the same vendor. If a da-
tabase from a different vendor is used, then it might or might not be possible to follow
the same approach. Some databases provide access to competitive products seamlessly
and in this case it works, too. Otherwise, the traditional way must be followed, i.e., the
adapter functionality is implemented outside the database.

Party Manager. Databases have natively user management functionality built in.
With the integration of directory services more expressive user management is possible.
In the simplest case, each party is represented as a user with its credentials and hence
the party management can be implemented natively through the given database func-
tionality.

If the functionality needed in a specific implementation of B2B integration technol-
ogy exceeds the provided functionality, then an external implementation might be nec-
essary.

Process Manager. Database management systems’ origin is data processing, not
workflow processing. Therefore process management functionality cannot be found as
a general functionality as such that is native to a database management system. Howev-
er, with the advent of publish / subscribe functionality [15] it is possible to implement
a subset of process management functionality directly.

• Sequencing. One important process functionality is sequencing of tasks. It is possible
to sequence tasks by coordinating them through queues. Once one task is finished it
places its result in a queue. The next task picks up the data from a queue and therefore
sequential processing is achieved.

• Conditional branching. Conditional processing can be achieved through publish /
subscribe functionality. A subscription can examine the attributes of a message body
and decide wether the message is applicable. A task subscribing to a message can
therefore decide which messages are relevant—this is conditional behavior.

• Broadcasting. Broadcasting out data to many subscribers is possible. The example is
the request for quotation. The request needs to be sent to many organizations. This
can be directly implemented through multi-consumer queues where one message can
be consumed by many recipients. The subscription in this case would ensure that all
recipients are subscribed and consequently will send the message to those.
In summary, the process manager is a component that in part can natively be imple-

mented through database technology. Other functionality has to be implemented out-
side of it.

Process Mediator and Data Mediator. Both, process mediation and data media-
tion is currently outside of native database functionality. This means that this function-
ality has to be implemented outside the database as normal programs accessing the da-
tabase.

Business-to-Business Integration Technology 249

3.2 Missing Functionality

While there is an impressive array of database functionality that can implement some
of the B2B integration system components directly, some major functionality is missing
in order to implement the complete set of B2B integration system components. This dis-
cussion is to some extent hypothetical as it is not clear whether the implementation of
this functionality is desirable at all—from a database technology viewpoint. However,
from a B2B integration technology viewpoint it is certainly interesting as its implemen-
tation would be seamless.

Business Event Mediation. As it was discussed before, data retrieved from appli-
cation systems that have to be sent to remote organizations might vary significantly in
their syntactical structure as well as their conceptualization of the business data content.
This requires transforming the data in their syntactical form as well as their semantic
conceptualization ensuring that the intended semantics is not changed whatsoever under
any circumstances during transformation. Transformation rules are the mechanism that
rewrites a business event in a different conceptualization.

Database technology does not implement transformation rules as a database native
concept. As such, no direct support is provided by it. Instead, an implementation of the
B2B integration system architecture has to implement the transformation rules ’outside’
or ’on top of’ the database management system in a programming language of choice.

Process Management. Choreography and orchestration are both necessary in order
to define the proper integration behavior of the communicated business events between
two or more organizations. While choreography supports the definition of the business
event exchange between two organizations, orchestration supports the definition of the
interaction order across several organizations.

Database technology does not implement process management functionality direct-
ly as database native concepts. Any process functionality required has to be implement-
ed as programs outside the database itself (and this includes stored procedures as a very
specialized programming language).

A specific exception is the multi-consumer functionality of publish/subscribe that
can, for example, implement the request for quotation scenario. This broadcast of busi-
ness events to several organizations can be natively implemented already today. How-
ever, the inverse operation, for example, that collects the quotes as responses of a re-
quest for quotation is already outside today’s native database functionality.

Semantic Web Technology. The representation of business events with Semantic
Web technology like ontology languages like RDF, RDFS, or OWL, and their concepts
is not supported natively in database technology. As a non-proprietary format only
XML is supported. However, from a conceptual viewpoint the definition of data in form
of ontology language concepts like classes, relationships, and attributes is not possible
in databases today. Semantic Web technology inherent concepts like subsumption or
logical constraints are missing.

250 Christoph Bussler

Adapters. Adapters are essential to connect from the inner system boundary to the
outer system boundary. The outer system boundary is the interface to application sys-
tems and communication software and therefore essential for making the B2B integra-
tion possible.

Specific application systems can be interfaced with directly through database tech-
nology. For example, if the application system is a relational database itself (called ap-
plication database in the following), then so-called database gateways can directly ex-
ecute queries on it. This means that the adapter implementation is at the same time a
client of the application database. In this case, the adapter can be directly implemented
by database technology and no separate program outside the database is necessary.

The same applies if the application system presents its interface as stored proce-
dures. Again these can be directly invoked and, also in this case, no separate adapter has
to be implemented. And if the application system presents itself as a message queue the
same situation exists. Here database technology can also directly implement the adapter
by connecting to the message queue through its built-in message concepts.

A big caveat, however, is that different database vendors support the interoperabil-
ity with competitive database products to a different extent. In a specific case when the
B2B integration system is implemented with a specific database product, it might not
be possible to implement adapters at all or only when the application database is from
the same vendor.

General adapter support is not available natively in database systems as such and
therefore adapters have to be implemented outside database technology, in general.

Transactional Remote Communication. The ultimate goal for B2B integration
systems must be to provide reliable and transactional communication over any network
between organizations that are engaged in B2B interaction. This is a must due to the na-
ture of the mission-critical data that is communicated. Currently, the implementation of
remote transactional communication is possible with database technology if the com-
municating organizations use database technology from the same vendor. Functionality
like message propagation can achieve transactional and reliable communication.

Distributed transactions are possible, too, but due to the nature of B2B interactions
(where one organizations does not like at all that their data resources are locked by an-
other organization) distributed transactions are not a serious alternative.

In general, however, database technology does not provide transactional connectiv-
ity to any network that exists like SWIFT [19] or remote invocation technology like
Web Services in the form of SOAP [8] and WSDL [5]. In those cases, separate commu-
nication software has to be linked to the B2B integration system to enable the commu-
nication of organizations over that specific network. And this means non-transactional
and non-reliable remote communication.

Business-to-Business Integration Technology 251

4 Future Trends and Extended Database Technology

Current database technology is a very important platform for B2B integration technol-
ogy. It is a proven and dependable technology, and with new functionality being incor-
porated continuously more and more business event requirements can be directly im-
plemented with current database technology.

As the discussion in the previous chapter has shown, some required functionality is
not yet available directly at the database interface. While it is not clear that it ever will
be, this section makes the case that it would be advantageous, at least for B2B integra-
tion technology.

After the discussion of additional required database technology functionality, future
trends in B2B integration technology are discussed. Areas such as Web Services as well
as Semantic Web Services are currently at the stage of research investigation and first
industry implementations can be found.

4.1 Extended Database Technology

The discussion of the B2B integration system architecture has shown that a variety of
native database functionality is missing (see section 3.2). To summarize, this is native
database technology support for

• Data transformation rules

• Semantic Web technology

• Transactional and reliable communication over any network

• Process management

• Generic adapter technology.
This additional functionality, if directly supported, would allow a completely native im-
plementation of B2B integration technology within a database platform. The benefit
would be that the complete processing would be reliable and powerful, transactional,
recoverable, and backups as well as save points would be available by default. Because
all definition as well as execution data would be under the management control of the
database technology itself, optimization would be possible across all stages of process-
ing. Furthermore, any future optimization work or extended functionality of the data-
base technology would directly and immediately benefit the B2B integration function-
ality.

4.2 Future Trends

Two significant future trends that are related to each other are Web Services and Se-
mantic Web Services. While Web Services are syntactic in their nature, Semantic Web

252 Christoph Bussler

Services are emphasizing the semantic description of remote functionality and are the
future of B2B integration.

Web Services. A very definitive trend for remote invocation of functionality over the
Internet currently is Web Service technology. There is a general expectation that remote
functionality is encapsulated and accessible through Web Services. The basic Web
Service technology is a combination of the implementation of two standards, SOAP [8]
and WSDL [5]. SOAP (Simple Object Access Protocol) is the definition of a message
serialization layout. A message that is SOAP compliant follows this message layout
definition. It consists of a header and a body. The header contains management data
while the body contains the business data that is transmitted. In terms of business
events, the header could carry the intent while the body of the message carries the busi-
ness event data. A SOAP message is represented as an XML instance and transmitted
as such. If both, sender and receiver are SOAP compliant, then both interpret the various
parts of the message the same way in terms of its syntax.

WSDL (Web Service Definition Language) is a methodology for describing a serv-
er interface in terms of operations. Each operation has input and output parameters and,
based on the concrete input, provides a concrete output. Operations are the way for a
server to provide functionality. Operations and their details are defined in a so-called
WSDL file. The specific definition of operations is expressed in XML.

The relationship between SOAP and WSDL is that in a WSDL file the operations
are declared. An operation has at most one input and one output message. The message
structure is defined in the WSDL file itself. A client accessing the server must ensure
that the SOAP message body follows the definition of the WSDL operation’s input mes-
sage. After the operation is executed, the output message of the WSDL operation is sent
back as a separate SOAP message to the client. In such a way, SOAP and WSDL are
complementary and both are the basic Web Service functionality.

For database technology—assuming that it plans to natively support Web Servic-
es—this means that it has to provide its functionality as Web Services. Its functionality
would have to be defined as WSDL operations and it could be accessed by sending it
SOAP messages. In turn, if database technology wants to incorporate Web Service
functionality, it must be able to send and receive SOAP messages as defined by WSDL
operations.

Semantic Web Services. A more advanced approach of defining and executing re-
mote functionality is Semantic Web Services. In this case, the service definition is de-
scribed through Semantic Web technology like ontology languages instead of solely
XML. Once remote functionality is described using Semantic Web Services, technolo-
gy services can be searched, too, as the search terms are semantically defined. Further-
more, the semantic integration is enabled as mediation technology can make use of se-
mantic descriptions in contrast to syntactic descriptions in ’traditional’ Web Services.
Transformation rules can refer to semantic concepts, relationships, and attributes ensur-
ing that after transformation the business events have the exactly same semantics. In ad-
dition, for establishing the transformation rules, a semantic definition of the functional-
ity helps as the concepts can be identified easily.

Business-to-Business Integration Technology 253

Currently relevant Semantic Web Service working groups are WSMO [16], WSML
[21], and WSMX [22]. These efforts are established through several European Union
IST projects and across several research institutes, universities, and commercial com-
panies. The outcome of these projects is already being used and deployed in various
projects like DIP [6], KW [10], ASG [1], Lion [11], and SWWS [20]. Initial industrial
efforts are taking place implementing Semantic Web Services technology. Other efforts
in this area are OWL-S [12] and METEOR-S [14] following different approaches.

Semantic Web Services are already being discussed in a standards effort called
SWSI (Semantic Web Service Initiative) [18]. This clearly shows that there is an enor-
mous interest as well as significant progress.

Semantic mediation is another area that receives a lot of attention currently in re-
search projects. Here the semantic description of data is key in order to provide media-
tion technology that allows defining transformation rules that preserve semantics.

5 Conclusion

The current efforts of Web Services and Semantic Web Services have a potentially big
impact for database technology. For database technology, this means that it has to up-
take Semantic Web and Semantic Web Services technology if it wants to continue to be
the implementation platform of choice for B2B integration technology in the long run.
From an integration perspective, this is certainly desirable in order to fully implement
B2B integration technology natively in database technology.

Acknowledgement

The personal discussion with Dieter Gawlick had significant influence in my way of
thinking about database technology as a platform for B2B integration technology rather
then as a pure data processing technology. I would like to acknowledge this here with
appreciation.

The work is funded by the European Commission under the projects DIP, Knowl-
edge Web, and SWWS; by Science Foundation Ireland under the DERI Lion and M3PE
project.

References

[1] ASG. Adaptive Services Grid. http://asg-platform.org
[2] The Accredited Standards Committee (ASC) X12. http://www.x12.org/x12org/index.cfm
[3] Bussler, C.: B2B Integration. Springer-Verlag, 2003
[4] Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration Engines.

Bulletin of the Technical Committee on Data Engineering 24(1): 3-11, March 2001

254 Christoph Bussler

[5] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (eds.): Web Services Descrip-
tion Language (WSDL) 1.1, W3C Note, March 2001, http://www.w3.org/TR/wsdl

[6] DIP. Data, Information and Process Integration with Semantic Web Services. European
Union IST project. http://dip.semanticweb.org

[7] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993

[8] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F. (eds): SOAP Ver-
sion 1.2 Part 1: Messaging Framework. W3C Recommendation, June 2003, http://
www.w3.org/TR/soap12-part1/

[9] J2EE Connector Architecture Specification. Version 1.5. Sun Microsystems. Final Re-
lease, November 2003

[10] KW. Knowledge Web. European Union IST project. http://knowledgeweb.seman-
ticweb.org

[11] Lion. DERI Lion. http://lion.deri.ie
[12] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Se-
mantic Markup for Web Services. http://www.daml.org/services/owl-s/1.1/overview/

[13] Oracle Streams. Advanced Queuing User's Guide and Reference. Release 10.1. Part No.
B10785-01, December 2003

[14] Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation
Framework. In: Proceeding of the 13th Conference on World Wide Web, New York, NY,
July 2004, pp. 554-562

[15] Publish/Subscribe. Oracle Database. Application Developer's Guide—Fundamentals. 10g
Release 1 (10.1), Part No. B10795-01, December 2003 (Chapter 11)

[16] Roman, D., Lausen, H., Keller, U. (eds.): D2v1.0. Web Service Modeling Ontology (WS-
MO) WSMO Working Draft, September 2004, http://www.wsmo.org/2004/d2/v1.0/

[17] RosettaNet. http://www.rosettanet.org
[18] Semantic Web Services Initiative (SWSI). http://www.swsi.org/
[19] S.W.I.F.T. SRCL. http://www.swift.com
[20] SWWS. Semantic Web Enabled Web Services. http://swws.semanticweb.org
[21] Web Service Modeling Language. http://www.wsmo.org/wsml/
[22] Zaremba, M. (ed.): D13.4v0.1 WSMX Architecture. WSMO Working Draft, June 2004,

http://www.wsmo.org/2004/d13/d13.4/v0.1/20040622/

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 257-276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Information Dissemination in

Modern Banking Applicat ions

Peter Peinl, Uta Störl

Fachhochschule Fulda, Germany / Fachhochschule Darmstadt, Germany
peter.peinl@informatik.fh-fulda.de, u.stoerl@fbi.fh-darmstadt.de

Abstract. Requirements for information systems, especially in the banking
and finance industry, have drastically changed in the past few years to cope
with phenomena like globalization and the growing impact of financial mar-
kets. Nowadays flexibility and profitability in this segment of the economy
depends on the availability of ready, actual and accurate information at the
working place of every single employee. These theses are exemplified by
outlining two modern real-life banking applications, each different. Their
business value is founded on the rapid dissemination of accurate information
in a global, distributed working environment. To succeed technically, they
employ a combination of modern database, networking and software engi-
neering concepts. One case study centers on the swift dissemination of struc-
tured financial data to hundreds of investment bankers; the other deals with
the rapid dissemination of semi-structured and/or unstructured information in
a knowledge retrieval context.

1 Introduction

The past decade has been characterized by the economic phenomena of globalization,
a shift from production oriented industries to service oriented industries, and the ever
growing importance of information technology. In particular, this has brought about a
dramatic change in the attitude towards and the requirements for the information sys-
tems in the banking and financial services industries. Originally, information systems
in these industries were vehicles to automate high-volume business processes (ac-
counts, credit cards, …). Yet their complexity was low or medium. Systems of that kind
were built on top of a database system, and a transaction processing monitor skilfully
exploited the available computing resources to maximize throughput in terms of stand-
ardized, simple transactions. Though it is arguable, whether these types of systems still
dominate the banking IT environment, certainly they still play an important role. Now-
adays and even more in the future, flexibility and profitability of this segment of the
economy crucially depends on the immediate availability of accurate information at the
working place of every single employee. Information has undoubtedly become one of
the most valuable resources in the banking industry.

258 Peter Peinl and Uta Störl

Due to business requirements and the rapidness of decision-making, the informa-
tion technology landscape is best characterized by a high degree of heterogeneity, the
physical and logical distribution of the application systems and the availability of high-
end technology. From an operational perspective, demands on information system reli-
ability, speed and accuracy are challenging. Likewise, this applies to development cy-
cles resulting in the need for rapid development and speedy introduction of new tech-
nology and operational systems into the business environment.

We exemplify these theses by outlining two modern real-life banking applications,
each representing one of a kind. Their business value is founded on the rapid dissemi-
nation of accurate information in a global, distributed working environment. Though
we also point out the potential economical benefits, naturally the article focuses on tech-
nologies employed, the technical problems overcome and some lessons learnt in the
process of implementing applications of that type. One case study centers on the swift
dissemination of structured financial data to hundreds of investment bankers. The bro-
kers’ decisions are based on real-time data and a very specific financial calculus. From
the technical and science perspective, the system makes use of a very intriguing com-
bination of database, network and software engineering techniques. The other case
study focuses on the rapid dissemination of semi-structured and/or unstructured infor-
mation in a large banking environment. Its architecture as well as an integrated frame-
work based on text mining technologies for efficient knowledge retrieval are presented.
One of the key modules consists of a browsable, automatically generated semantic net-
work, extracted from various document sources (in-house as well as external) without
any need for expensive human modeling or supervision.

2 A Large Scale Real-Time System for FX Trading

2.1 Motivation

Global networks had been effecting large scale transactions between financial institu-
tions for a long time before E-commerce or the WWW came to everyone’s attention.
Knowledge about the intricacies of securities and derivatives is shared among just a few
professionals within each bank. The profitability of the traded products remains high as
long as only few players understand their real mechanisms and implications. Striking
successful deals depends on the availability of consistent and current market prices. A
combination of well conceived trading strategies, the availability of current market data
and sophisticated tools for their interpretation and evaluation constitute a sound basis
for high profitability in the business.

The case study outlines the design and implementation of a large scale online/real-
time system for the foreign exchange (FX) division of a world-wide investment bank
with hundreds of brokers employed in several trading rooms in various countries. In the
design phase, major issues, such as parallelism, representation and location of data,
techniques for their replication and the distribution of work between client and server

Information Dissemination in Modern Banking Applications 259

had to be deliberated and appropriate solutions to be found. Common issues like relia-
bility, availability and accountability had to be addressed, too. As the system comprises
more than half a million lines of code and commensurate functionality, only some of
the more interesting aspects of distribution, replication, and the particular way of parti-
tioning the calculation functionality between the client and the server side can be ex-
pounded here.

2.2 Some Basic Terms of FX Trading

FX trading [17] is the business of exchanging currencies, the most actively traded being
the US Dollar (ISO code USD), Euro (EUR), Japanese Yen (JPY) and British Pound
(GBP). In inter-bank trading the typical transaction amounts to several million USD.
Mostly, banks act as intermediaries between the actual buyer and the seller of a curren-
cy, thereby earning a commission. Therefore, two rates (prices) are quoted for a curren-
cy, i.e., the offer rate (sell price) and the bid rate (buy price). The commission results
from the difference between those rates (spread). Moreover, trades may be distin-
guished into types depending on the effective exchange date and whether it is manda-
tory or optional to complete the exchange.

– The simplest type is called spot contract, because it is effected immediately1.

– The effective date of exchange in a forward contract [9] lies in the future2. But both
parties agree on a fixed price in advance. Thereby an export company might hedge
against currency fluctuations. The “insurance premium” is charged in the form of a
swap rate3. Market rates for swaps are quoted for standard value dates4, such as 1, 2,
3, 6 or 12 months, any dates in between are interpolated by various techniques.

– An option has some commonality with a forward contract. However, one party may
unilaterally decide to (not) complete the exchange at the predetermined date (expiry
date) and price (the strike price)5. Naturally, that heightened degree of freedom has
its price. Complex formulas guide the calculation of the option price6, based on pa-
rameters such as spot, swap and interest rates, plus the so called volatility.

Much more could be said with respect to the FX calculus, but there is no room to explain
anything close to the real complexity in a paper as this7.

1. Reality is a bit more complex. It takes one or two days to settle the deal.
2. maybe even years
3. which reflects expectations of the future spot rate plus interest
4. effective date of the exchange, i.e.settlement
5. Again, for the sake of brevity reality has been grossly simplified—for details see [9]
6. Beware that option price and strike price are different notions.
7. The underlying rules have evolved in the past 100 years and are known to a few spe-
cialists and are far from trivial and systematic.

260 Peter Peinl and Uta Störl

2.3 Trading Room and Communication Infrastructure

Even being implemented from scratch, the system had to fit into an existing IT infra-
structure. To comprehend some of the design decisions and receive an impression of the
working environment of a trader, the typical trading room information and communi-
cation infrastructure is sketched in Fig. 1.

A trading room, potentially separated into several compartments, may house hun-
dreds of persons. Each workplace is equipped with at least one powerful workstation
and two or even three large colour screens to display the various (real-time) data a trader
is interested in. Often a commercial UNIX is the operating system of choice and, natu-
rally, the GUI is window-based.

Communication soft-
ware and protocols in
these environments al-
ways have been from
the Internet stack
(TCP/UDP/IP), even
years before these pro-
tocols became the com-
munication system of
choice in the consumer
market (WWW). Com-
munication on the
physical layer is ena-
bled by a high-speed
local area network in
the trading room (com-
partments). The latter
may be segmented and
interconnected through

an extremely high-speed backbone. Global distribution of trading rooms (a popular set-
up being London, New York, Tokyo), which are connected through a private wide area
network, enables continuous trading. The bandwidth of those networks is shared be-
tween various (bank internal) information systems, each typically running on one or
more servers. Real-time market data for a plethora of tradable financial products is gath-
ered externally by one or more external information providers (the market feed in
Fig. 1), such as Reuters, Bloomberg and Dow Jones/Telerate, and made available
through proprietary software and communication protocols [19]. In the system de-
scribed here, as is common for many other bank internal information systems, the raw
market data may be modified to a certain extent before being used within the bank in-
ternal information system, for instance to implement a consistent and successful trading
strategy.

Fig. 1 Trading Room Infrastructure

trader workstations

trader workstationsmarket feed

application servers

WAN

LAN

LAN

back
bone
LAN

TOKYOLONDON

NEW YORK

Information Dissemination in Modern Banking Applications 261

2.4 The Trader Interface

The overall goal of the system is to give the traders access to all standard FX market
rates, and to equip them with a powerful financial calculus heeding all FX intricacies.
This calculus determines the prices of non-standard FX products, for which there are no
market prices and typically incorporates confidential pricing models. Basic rates are
mostly taken from real-time market feeds, for instance Reuters, and relayed to the trader
workstations, potentially after applying some modifications. Those modifications re-
flect the trading policy and are determined by authorised traders. Once the policy has
been altered, the stream of real-time data relayed to the trader workstations has to be
altered accordingly, and mirrored on the workstations with as small a delay as possible.
Obviously, the whole process has to be secure, reliable and accompanied by audit ca-
pabilities, among other considerations.

The trader sees the result of this process through a number of windows, each of
which either assembles the data particular to a financial product or displays an overview
of a specific market. In total, the system comprises about 100 different windows. Fig. 2
shows a screen dump of the simpler kind, the so called spot window, that groups the
spot rates of the traded currencies. In reality, apart from the numbers, additional infor-

Fig. 2 Example of Information Presented to the User by the GUI

262 Peter Peinl and Uta Störl

mation to a large degree is conveyed through different colours, which in the printed ver-
sion of this paper is transformed into more or less intense shading. The first column of
the window specifies the currencies exchanged, the third and fourth display the external
bid and offer rates, the last column shows the spot date. For a more detailed explanation
see [18]. Value changes to market rates are indicated by highlighting them temporarily
on a coloured background. Thus, in reality Fig. 2 shows a snapshot of a highly dynamic
data stream.

Though a workstation accesses a continuous stream of real-time data, each trader
might wish to alter the given rates or specify completely different ones to evaluate cer-
tain alternatives (what-if scenarios). To meet this requirement, the system allows to se-
lectively freeze or overwrite the real-time input rates on any chosen workstation and to
reverse this decision any time later. All those decisions are made independently on each
workstation and each trader may open any and as many windows he likes, and at any
time.

2.5 System Requirements and Architecture

Technical and Organizational Requirements.

• Trader autonomy. Every trader decides which part of the FX calculation functional-
ity is needed at a time. A workstation may disconnect partly or entirely from the real-
time rate distribution mechanism in order to perform calculations based on a mix of
trader specific and real-time rates to assess what-if scenarios. Switching back to real-
time rates should be effected with minimal delay.

• Centralized policy making. Trading policy is governed by rules and parameters ap-
plied to market rates and calculation models. Changes in policy have to be delivered
to all workstations without loss, duplication or reordering as speedily as possible.

• Integrity and accountability. All changes to the trading policy and the system con-
figuration have to authorised and logged.

• Recoverability. Recovery of a single workstation or the central policy setting in-
stance should be swift, automatic and transparent to the user. In particular, policy re-
lated information must not be lost in a failure of the system.

• Coupling modes between trading rooms. Certain policy aspects are common for all
trading rooms. The system has to provide an appropriate replication mechanism.

Architecture—Functional View. The functional decomposition of the system is laid
out in Fig. 3. The example system interconnects two instances, i.e., trading rooms in
Frankfurt and London. The diagonal line illustrates the geographical separation, but
should not be mistaken to signify any logical separation or lack of integration among
the software elements in the trading rooms

Information Dissemination in Modern Banking Applications 263

Client and server side of the
FX system have been struc-
tured into a number of respec-
tive software layers. The serv-
er side of the Frankfurt part of
Fig. 3 consists of the three
boxes above the right end of
the diagonal line (labels start-
ing with “S-”).Their counter-
parts in London are posi-
tioned close to the left rim just
below the line. All other box-
es in Fig. 3 represent the cli-
ent sides of the system. A ver-
tical arrangement of boxes
typically groups the compo-
nents running on a single ma-
chine.
Subsequently, purpose and
functionality of each layer
will be explained, starting on
the client side, and some of
the salient features will point-

ed out.

• The presentation layer (“Pres” in Fig. 3) comprises all the input and display func-
tionality, but does not include any of the functionality related to the FX calculus. The
box in Fig. 3 stands for a number of different and independent elements implement-
ing interfaces to the user, for example the graphical interface of the TIS (Trader In-
teraction System) depicted in Fig. 1. Other elements of the presentation layer interact
with specific information systems of the banking environment that need a particular
set and representation of the FX data. Typically these elements operate as back-
ground processes in batch mode (see the upper left corner of Fig. 3) and have cus-
tom-made interfaces to the applications.

• The application layer (“Appl” in Fig. 3) implements the entire functionality of the
financial calculus (see Sect. 2.4). Following the rules of object-oriented design, all
the complexities of the FX calculus are effectively encapsulated. Increasingly com-
plex financial products have been modelled as objects (implemented in C++), are or-
ganized into a hierarchy and are calculated as necessary, i.e., on demand, from the
more basic ones. The highlights of this dynamic, on-demand, graph-based real-time
recalculation scheme will be elaborated in Sect. 2.6. All objects are made accessible
to the presentation layer by means of a publish-and-subscribe [6] interface. The clear
functional separation resulting from the layered approach entails great freedom and
flexibility for the distribution of instances to machines.

Fig. 3 Architecture—Functional View

S-DBS

S-Data

S-Repl

Appl

Repl

Pres

Appl

Repl

Pres

Appl

Repl

Pres

London

Appl

Repl

Pres

Appl

Repl

Pres

Appl

Repl

Pres

S-Data

S-Repl

S-DBS
Frankfurt

Pres

Appl

Repl

Pres Pres

264 Peter Peinl and Uta Störl

• The replication layer (“Repl” in Fig. 3) guarantees the application layer to always
have up-to-date basic rates and parameters determining trading policy at its disposal.
For this purpose the replication layer acts as a shared global memory for all instances
of the application layer in a trading room. Features included are automatic recovery
in case of partial or total system or communication failure. The rationale for having
the replication layer is founded on the observation, that there is only a relatively
small number of base objects of modest size from which all the other objects can be
dynamically calculated.

The server side is also built in three layers. A centralised server with some redundancy
for reasons of fault-tolerance was mandated by some organisational requirements, but
the approach also has its technical merits.

• The replication layer (“S-Repl” in Fig. 3) guarantees that all counterparts on the cli-
ent and server side always have the same set and state of the base objects.

• The data layer (“S-Data” in Fig. 3) maps objects to a relational representation [11],
which was necessitated by organizational reasons in the operational environment.

• For the same reasons, a commercial relational database management system was se-
lected to hold the persistent parts of the FX data (“S-DBS” in Fig. 3). The FX system
relies on the integrity preserving functions of a DBMS to aid recovery and enable au-
dits, among others.

As neither a single system on the
market nor an easy combination of
common off-the-shelf tools could be
identified, that would technically ful-
fil all requirements, it was decided to
build some critical mechanisms and
components as a proprietary solu-
tion. Off-the-shelf commercial soft-
ware products and components were
employed wherever feasible and in
conformance with bank procurement
standards.

Architecture—Dynamic View.
Fig. 4 depicts the dynamic aspects of
the FX system. Every box corre-
sponds to an operating system pro-
cess. In many cases there is a one-to-
one mapping between processes and
instances of the functional layers in-
troduced in the preceding section, the
only exception being the replication
layer. All the processes constituting

Fig. 4 Architecture—Dynamic View

application
layer
Appl

presentation layer

TIS
AIS

data layer
S-Data

S-DBS

S-BBC

CIS-DOM C-DOM

C-BBC

replication layer

S-Repl
Repl

Information Dissemination in Modern Banking Applications 265

the server side are arranged on the left of Fig. 4 and the respective client side processes
on the right. In total three client instances, running on different workstations, are shown.

When a policy change or a new value of a base rate enters the system (for example
via an external data feed), the data layer on the server side records it in the database and
forwards it to the distributed object manager on the server side (S-DOM). S-DOM al-
ways holds the master copy of the up-to-date versions of all base objects in volatile
memory. After changing the objects in the S-DOM, they are relayed to the server side
object distribution component (S-BBC8), which multicasts them to the corresponding
client side (C-BBC). From here, they are relayed to their respective C-DOM. Changes
to objects in the C-DOM automatically trigger the dynamic recalculation scheme in the
application layer (see Sect. 2.6). Thus, the replication system is the vehicle to maintain
current and consistent mirrors of all base objects in all clients. The CI (client initialize)
process, also part of the replication layer, establishes an up-to-date replica of all base
objects during recovery or the regular start-up sequence of a client. There is a lot of flex-
ibility with respect to the distribution of system components. Depending on the actual
environment, multiple instances of these processes might be used to serve each com-
partment of a segmented trading room. Thus a lot of communication bandwidth can be
saved.

2.6 Implementation of FX Calculus

General Aspects. Two big decisions were to be made during the design phase of the
system.
– Where and how to perform the calculations respecting all FX peculiarities?
– How to deal with the more or less continuous real-time updates of some basic rates?

Even a cursory analysis of the FX calculus and the dependencies among the diverse fi-
nancial products clearly revealed that there was only a relatively small set of basic fi-
nancial objects, depending on which a potentially huge number of other objects were
calculated. The objects to be calculated were determined by the specific task of a trader,
and never were major parts of the object set required by a single workstation. Yet, the
set of objects needed per workstation might change from time to time. As a conse-
quence, centralised calculation of all possible rates was discarded as an option, due to
the expected server and network load and the futility of calculating values not needed
by any client. Hence by design, all the calculations were shifted to the client side and
only those values are recalculated that directly or indirectly depend on changed input.

Dynamic Recalculation Mechanism. Analysis of the structural and mathematical de-
pendencies between the various FX products revealed, that all objects representing fi-
nancial products could be arranged into an acyclic graph. Links between nodes signify
rates that have to be calculated as a prerequisite to the calculation of others. An excerpt

8. Basic Broadcasting Component (client and server)

266 Peter Peinl and Uta Störl

of this graph is drawn in Fig. 5. Primarily, the entire concept of the novel recalculation
algorithm is founded on the ability to disjointly classify the objects as either base or cal-
culated and secondly that all base objects by the nature of the application are arranged
below all calculated objects. The horizontal line in the middle of Fig. 5 symbolizes this
conceptual boundary. Two layers of base objects can be seen below two layers of cal-
culated objects. The values and states of the base objects are held on the server side of
the system using standard transactional features [13, 14] of a commercial database sys-
tem and the replication mechanism implemented within the FX system maintains an up-
to-date, exact replica of this state in every client connected. Every modification of the
state or value of a base object detected by the replication system on the client side au-
tomatically triggers the recalculation of all its dependent objects.

In the example of Fig. 5 one of the base objects (labelled “Holiday List FRF”) is
changed by the replication system. As a consequence, all dependent objects first have
to be determined and subsequently recalculated. One of the virtues of the mechanism is
its object-oriented implementation. Thereby each object inherits and overwrites abstract
methods for the recalculation, connection and disconnection to the overall graph. The
objects are controlled by an engine, which drives the evaluation by first arranging the
objects concerned into layers and then invoking the recalculation methods of the respec-
tive objects. Because of this, the system can be extended easily to incorporate new ob-
ject types, which just need to re-implement the connect and disconnect methods and to
specify the recalculation method that is particular to the financial product modelled by
the object.

Fig. 5 Dynamic Recalculation of Objects

Spot
FRF Today Currency

USD

Holiday
List
USD

Exchange
VD

FRFUSD

Exchange
VD

FRFDEM

Currency
FRF

Holiday
List
FRF

Currency
DEM

Holiday
List

DEM

External
FRFDEM

ExchangeVDP
FRFUSD

ExchangeVDP
FRFDEM
viaUSD

SpotPair
FRFDEM
viaUSD

calculated objects

persistent objects

Currency
CHF

Holiday
List
CHF

Exchange
VD

CHFUSD
External
CHFUSD

Spot
CHF

Spot
FRF Today Currency

USD

Holiday
List
USD

Exchange
VD

FRFUSD

Exchange
VD

FRFDEM

Currency
FRF

Holiday
List
FRF

Currency
DEM

Holiday
List

DEM

External
FRFDEM

ExchangeVDP
FRFUSD

ExchangeVDP
FRFDEM
viaUSD

SpotPair
FRFDEM
viaUSD

calculated objects

persistent objects

Currency
CHF

Holiday
List
CHF

Exchange
VD

CHFUSD
External
CHFUSD

Spot
CHF

Information Dissemination in Modern Banking Applications 267

Dynamic Restructuring Mechanism. Another virtue of the mechanism lies in its dis-
tribution properties. The graph is dynamic and only comprises the calculated objects ac-
tually needed by a particular client instance. In any case, only the minimum computa-
tion effort is required. This is achieved by calculating the dependency graph on demand.

In the following a scenario is presented in which a trader opens an additional win-
dow to display, for instance, cross spot rates. During initialisation the presentation layer
issues a subscription to the application layer referring to the cross spot rate of French
Francs versus Swiss Francs (FRF/CHF). The application layer detects that this rate so
far has not been calculated on the particular workstation and thus creates an instance of
the object. The new object recursively tries to locate all objects in the application layer
that are needed for the calculation, creating them if necessary. The starting point of this
scenario shown in Fig. 5, whereas Fig. 6 depicts objects and dependencies after the
completion of restructuring. As can be seen in Fig. 6, two more objects have been cre-
ated recursively, in addition to the (root) object originally requested. Technically, re-
structuring is supported by a general addressing and location mechanism in the appli-
cation and the replication layer, as well as a generic connect and disconnect mechanism
which can be invoked by each object.

Fig. 6 Dynamic Restructuring of Object Dependencies

Spot
FRF Today Currency

USD

Holiday
List
USD

Exchange
VD

FRFUSD

Exchange
VD

FRFDEM

Currency
FRF

Holiday
List
FRF

Currency
DEM

Holiday
List

DEM

External
FRFDEM

ExchangeVDP
FRFUSD

ExchangeVDP
FRFDEM
viaUSD

SpotPair
FRFDEM
viaUSD

calculated objects

persistent objects

Currency
CHF

Holiday
List
CHF

ExchangeVDP
CHFUSD

Exchange
VD

CHFUSD
External
CHFUSD

Spot
CHF

SpotPair
CHFUSD

Cross-
SpotPair
FRFCHF

Spot
FRF Today Currency

USD

Holiday
List
USD

Exchange
VD

FRFUSD

Exchange
VD

FRFDEM

Currency
FRF

Holiday
List
FRF

Currency
DEM

Holiday
List

DEM

External
FRFDEM

ExchangeVDP
FRFUSD

ExchangeVDP
FRFDEM
viaUSD

SpotPair
FRFDEM
viaUSD

calculated objects

persistent objects

Currency
CHF

Holiday
List
CHF

ExchangeVDP
CHFUSD

Exchange
VD

CHFUSD
External
CHFUSD

Spot
CHF

SpotPair
CHFUSD

Cross-
SpotPair
FRFCHF

268 Peter Peinl and Uta Störl

2.7 Implementation of Replication and Recovery

Local (Intra-room) Replication and Recovery. The primary task of this component
is to provide each client instance with an up-to-date replica of all the base objects need-
ed by the application layer. This includes a fast and efficient mechanism to establish an
initial state in a client at start-up or after recovery and the speedy relay of all changes
forwarded by the server instance. Commercial products examined [3, 2] did not provide
the required functionality, because among other reasons, they either missed a broadcast/
multicast feature or were not easily adaptable to our object model. Thus it was decided
to implement a mechanism specific to the needs of the FX system.

Changes to objects made in the S-DOM (see Fig. 4) are delivered to the S-BBC. Be-
fore multicasting them over the network, they are linearized and compressed by one or
more methods of our object model, which is inherited from the FX-object superclass.
Message numbering schemes and on-demand retransmission guarantee that the C-
DOM maintains an up-to-date replica of the global object state. So, normally, an object
change is physically transmitted (using multicast UDP/IP) just once over the network.
Only in case a client does not receive a particular update, its C-BBC contacts the S-BBC
to selectively retransmit. As some changes do affect more than a single object and need
to be either applied to the client side in total or not at all, i.e., they are atomic, the mes-
sage numbering scheme even accounts for mini-transactions [10], i.e., the contents of
several messages are handled as a single change to the global state and are forwarded
from the C-BBC to the respective C-DOM appropriately.

Distributed (Inter-trading Room) Replication. Little mention has been given to the
interaction between geographically distributed elements of the FX system, except for
depicting two trading rooms in Fig. 3. The chosen solution for the implementation of
inter-trading room replication again depended on some of the specific requirements of
the application. First of all, two or more geographically distributed trading rooms oper-
ate in a relatively autonomous mode. The overwhelming part of the calculation of rates
is determined by a “local” (trading room specific) policy, because the entire calculus is
based on a (in our jargon) “home” currency. Typically this is the economically most im-
portant currency in the geographic area. As a consequence of these observations, only
a few parameters of the trading policy are global and to be maintained consistently in a
replicated fashion. For implementing the replication functionality between trading
rooms, a few options were evaluated.

• A proprietary scheme was ruled out for technical and practical reasons. The imple-
mentation of the local replication system, necessitated by functional and perfor-
mance reasons, already amounted to a big effort. However, this would not be justi-
fied for the global one. Furthermore, the global replication scheme required the entire
set of properties (ACID) normally associated with (database) transactions [14].

• A second alternative was seen in using one of the commercially available message
queuing systems [1, 12] to transmit changes reliably between the trading room sys-
tems. However, this would not have provided for the reliable transmission of the

Information Dissemination in Modern Banking Applications 269

changes end-to-end, i.e., from on FX system to another. Fortunately, the database
system employed provides a very powerful replication mechanism [8], by which ei-
ther data, i.e., tables and/or rows, or the execution of stored procedures can be repli-
cated. As the number of FX objects and hence object types to be replicated is small,
procedure replication was elected as the replication mechanism. In fact, procedure
replication, apart from reasons of performance, was much better suited to the task.

2.8 Lessons Learnt

The design and implementation of a large software system often resembles a journey
into unsurveyed territory. To succeed it is paramount, that requirements have been
properly understood. This knowledge enables the implementor to make his own judge-
ment as to the real needs and priorities of the system’s features. Also, commercial soft-
ware engineering in general implies that as much standard software as feasible is em-
ployed. This minimizes costs and duration of system development. Proprietary solu-
tions should only be considered where available commercial software does not
comprise required features9 or is utterly expensive10.

One of the big challenges in the FX system described was to implement all the pe-
culiar rules and usances of FX trading, including mechanisms that allow to adapt exist-
ing FX products and to incorporate novel FX products. Another big challenge was
posed by the need to effectively support the trading policy within the bank, resulting in
very particular requirements for the distribution and replication of the data.

Among others, the first objective was achieved by the encapsulation of all the cal-
culus pertaining to a particular FX product into an object, and the structuring of those
objects into an acyclic graph that could be exploited for our on-demand recalculation
mechanism. That mechanism plus the decision to perform all the calculations on the cli-
ent side is one of the major assets of the system, from the performance point-of-view as
well as with respect to its extensibility. Insofar, object-orientation served quite well for
that purpose. Even though the mapping of the base objects to relational data structures
incurred some of the usual problems, this drawback was by far offset by the ability to
fit into the established infrastructure of commercial database systems within the bank.

Furthermore, the standard replication mechanisms of the database system provided
all the features that were needed to implement the particular replication strategy be-
tween the trading rooms that was mandated by the trading policy. The missing parts
were implemented with relative ease in the form of stored procedures, which proved to
be an extremely useful feature. A lot of thought went into the design and implementa-
tion of the local replication mechanism, i.e., the replication of on-line rates within a sin-
gle trading room. A profound study of distributed messaging algorithms [7], especially
those including atomic multi-cast, and a survey of available products did not come up

9. avoiding what is usually—quite appropriately—called the NIH (Not Invented Here)
syndrome
10. Costs must be stated honestly, i.e., licence and maintenance costs of standard software
vs. development and maintenance cost, especially personnel, of the proprietary software.

270 Peter Peinl and Uta Störl

with a single one that would satisfy all our needs. Mostly, our very particular multi-cast
semantics in conjunction with atomicity properties and the need for proper recovery
would not be supported. As a consequence, there was no choice but to opt for a propri-
etary implementation of such a mechanism. From the engineering point-of-view this
turned out to be quite a challenge, because of all the intricacies of concurrency, fault-
tolerance and atomicity in distributed systems. It was worth the effort, because there
was no choice. However, this dissemination mechanism is relatively small compared to
the generic infrastructures provided by companies like Reuters[19], DowJones or
Bloomberg, and shows the business value of the latter.

After describing challenges from and solutions to the rapid dissemination of struc-
tured financial data, the focus now shifts to the processing of the huge amounts of semi-
structured and unstructured information, which exists today and will dramatically in-
crease in volume in the future.

3 Setting Up an Infrastructure for Efficient Retrieval of
Unstructured Information

3.1 Motivation

Alongside structured information, a primary means of recording, transporting, and stor-
ing knowledge is the document, be it a letter, an invoice, an internal memo, or informa-
tion provided by internal or external market research, to cite a few examples. Within big
financial service companies an estimate for the number of document pages containing
valuable information will probably amount to be in the range of billions of pages. Thus,
the main issue associated with information retrieval in today's working environment is
the enormous amount of data to be searched. The engineering progress that has made
those vast repositories of data possible has no real counterpart in the semantics of the
resulting systems. Nowadays, information retrieval primarily still means keyword-in-
dex-based or full-text search on the data (i.e., the signal) itself. An evaluation of the sta-
tistics of one such retrieval mechanism – the keyword-index-based search engine im-
plemented on the Dresdner Bank corporate intranet – has revealed that a very high per-
centage of users just specify a single keyword in their search, which generally leads to
a very unspecific and usually huge result set. To identify the relevant items it is still in-
evitable to manually browse through the entire result set, unless the documents are re-
ally well annotated, which usually is not the case.

A core factor of today’s document or even “knowledge”-management systems is its
dependency on some sort of structural input. Be it pre-clustering, providing keywords
or developing a structure which documents may fit into, most commercial systems are
not able to generate real benefit for retrieval without manual effort. Therefore organi-
zations, whose primary business asset is information, are facing a somehow paradoxical
situation. On the one hand information is available in ever greater quantity and variety;
however, on the other hand the probability that one can find and utilize this information

Information Dissemination in Modern Banking Applications 271

is decreasing. As information is to a great extent available textually in natural language,
and as such in unstructured or only partially structured form, natural language technol-
ogy can play an important role in dealing with this flood of information.

3.2 Architecture Principles

The main idea of the approach presented was derived from the observation, that the typ-
ical knowledge worker is not willing or simply does not have the time to do extra work
(for example to specify and maintain keywords, integrate documents into pre-existing
structures, etc.) to facilitate knowledge sharing with colleagues. Therefore, it is neces-
sary to provide a set of tools that on the one hand do all the extra work without requiring
intervention or even attention by the knowledge worker, and that on the other hand will
provide him with an easy to work retrieval tool so he can efficiently find his way
through the growing knowledge repository.

An integrated framework built on these tools would enable every employee to use
as well as to contribute to the company’s “digital organizational memory” without hav-
ing to acquire beforehand special skills or knowledge. Hence, compared to today's sys-
tems the threshold for effective knowledge management will be drastically lowered.

One of the prerequisites for knowledge management is to get access to and incor-
porate those vast document repositories. The automatic creation of a simple syntactic
index of all electronically available documents is a first approach. This initial solution
has the advantage of being simple and cheap. But its shortcoming is low quality, i.e., an
unspecific and usually huge result set. Because of this much research is oriented to-
wards conceptualizing knowledge in order to abstract a model (pre-clustering, building
ontologies, etc.). However, most of these approaches are very expensive because they
typically entail a big manual effort.

Taking this into account, the benefit of an automatically generated and semantically
enriched search mechanism becomes obvious. The concept presented combines the low
initial effort required by an indexing approach with several methods of automated im-
plicit model building and a retrieval mechanism, which smoothly fits into the individual
desktop workspace [16]. On the retrieval side term correlation measure is used to ex-
tract some semantic information from large corpora of documents that are already avail-
able in the intranet or other large document repositories [15]. This information is then
taken to draw a semantic network (see Fig. 7 and Fig. 8) that allows associative search
and retrieval of documents. On the other end we automatically enrich documents se-
mantically, using term extraction methods and term frequency analysis to determine the
most relevant keywords [4]. These constitute important meta-information for a given
document to facilitate and improve indexing and retrieval.

The common principle guiding the various approaches is our notion of “minimal in-
vasive knowledge management”, which may be summed up as an IT-driven knowledge
management infrastructure, which smoothly integrates itself into the personalized
workspace and workflow of each individual knowledge worker without any need to
learn new tools, change habits or even be aware of its functionality [5]. To accomplish
this, the whole knowledge management process must be effected in the background and

272 Peter Peinl and Uta Störl

run automatically without the need of human interaction. Widely used applications like
word-processors, e-mail, or presentation graphics are the primary means for work with
knowledge. The integration of these standard applications into the framework permits
easy and efficient knowledge collection. Ideally, the introduction of a new item into the
knowledge base must not cause any additional effort to the usual daily work. On the re-
trieval side a semantically rich presentation layer is provided.

3.3 Modules

Several modules, representing the respective parts of the framework have been imple-
mented or are currently under development. The main building blocks that constitute a
knowledge management tool-set are described in this section.

Term Extractor. To support the intelligent indexing part of our framework, a natural
language term extractor11 is employed. This tool applies methods from linguistic anal-
ysis to extract tagged terms from given documents and is driven by a task specific gram-
mar [20]. Based on this component two high level applications have been developed in
Dresdner Bank: the Knowledge Net and an Automated Meta-tagging Engine. These
tools address the different aspects of indexing and semantic enrichment of documents
that have been described previously.

Knowledge Net. The goal of the “Knowledge Net” (kNet) application is to improve the
usability of the search interface and the quality of search results. It defines a general ar-
chitecture for knowledge retrieval based on text mining technologies by automatically
generating a browsable semantic network of terms extracted from the document repos-
itory without any need for expensive human modeling or supervision [5].

The indexing engine is based on a term correlation grammar, which extracts pairs
of named entities and calculates two correlation measures.

• A syntactic distance measure shows an untyped relation between two terms within a
document or document part.

• The second, paradigmatic measure, is drawn from statistical analysis of context sim-
ilarities.
On the retrieval side the kNet has a visual search interface that implements our idea

of an implicit knowledge model. Based on the two correlation measures a semantic net-
work is drawn, representing the terms as nodes and weighted, coloured edges the two
types of correlation. Fig. 7 shows the search result for “Dresdner Bank” in autumn
2001. A strong syntactic relation exists between Dresdner Bank and Allianz—not a sur-
prise considering the fact that Dresdner Bank was taken over by Allianz in Spring,
2001. Having discovered that relationship, the user can easily restrict the search to doc-

11. Currently we use the Insight Discoverer Extractor of Temis SA (http://www.temis-
group.com)

Information Dissemination in Modern Banking Applications 273

uments containing the term “Dresdner Bank” as well as the term “Allianz”, just by one
mouse click—adding “Allianz” to the search phrase. Moreover, this example illustrates
another feature of the kNet—the ability to extract named entities, e.g., company names
like “Dresdner Bank” or names of persons. Furthermore, this kind of graphical repre-
sentation indicates whether terms occur in different typical contexts. An example—the
search result for the term “PKI”—is shown in Fig. 8. Even though the term “PKI” most-
ly stands for Public Key Infrastructure it has two completely different meanings inside
Dresdner Bank:

There is a strong syntactic relation between “PKI” and “GB”. In this context, “PKI”
stands for “Private Kunden Inland” (private customers inland) and “GB” means “Ge-
schäftsbereich” (business division). So the solution is: “PKI” is the name of a business
division of Dresdner Bank. There is also a strong syntactic relation between “GB” and
“PVK” and a strong paradigmatic relation between “PKI” and “PVK”. However, there
are not many documents containing “PKI” as well as “PVK” yet there must be a corre-
lation between PKI and PVK. Well, PVK is the former name of the business division
PKI. So it is possible to detect interesting correlations between terms and exploit this
information for a refined, more successful search: “PKI” as well as “PVK” are included
into the search phrase to find all relevant documents—independent from the current
name of the business division.

However, “PKI” and terms like “Hauptspeicher” (main memory), “RAM” and
“MByte” are also interrelated. What does this mean? Answer: “PKI” is also the name
of an in-house application of Dresdner Bank and existing documents describe the pa-
rameters to configure the computer for this application. Again the search criteria may
be refined by including relevant terms and by restricting the search to the relevant con-
text at the same time.

Fig. 7 kNet Example: Search Result for “Dresdner Bank”

274 Peter Peinl and Uta Störl

While the kNet12 increases the quality of search results on the client side, quality,
i.e., the semantic richness of documents, can also be improved on the “backend” side.
One possibility is the usage of meta-information. In the next section a prototype is de-
scribed, which permits one to automatically extract keywords from documents of al-
most all formats. Both concepts are orthogonal but can (and should) be used jointly.

Automated Meta-tagging Engine. Meta-information, e.g., topic or keywords, as-
signed to documents, helps to determine the relevant ones in search and retrieval pro-
cesses. However, to assign meta-information in the form of keywords and topics to doc-
uments is a very tedious task. On the one hand, the specification of keywords pertaining
to a document burdens the author with a cognitive effort that consumes too much time
and energy. On the other hand, the keywords assigned seem to be sensitive to personal
disposition, varying with the situation of the author, etc. Because such keywords often
tend to be too general, their value in the search process is extremely reduced. Further-

12. Currently the kNet is being enhanced and developed into a commercial solution by
H.A.S.E. GmbH (http://www.h-a-s-e.org) and Temis SA (http://www.temis-group.com)

Fig. 8 kNet Example: Search Result for “PKI”

Information Dissemination in Modern Banking Applications 275

more, it seems difficult to establish a unified linguistic basis (e.g., some keywords ap-
pear preferably in their plural form, others in singular etc.).

To address these problems an automated meta-tagging engine was implemented,
based on another specialized grammar for the term extractor. It computes a set of sta-
tistically selected lemmatized keywords for a given document. At present we are eval-
uating different algorithms, using text frequency combined with document frequency as
statistical measure, as well as clustering- and categorizing-based approaches.

Moreover, the meta-information generated about the document content needs to be
stored and managed appropriately. With respect to the format, the goal was to make use
of non-proprietary standards which are supported by different search and retrieval en-
gines. Besides the established meta-tags for HTML documents, we decided to use
XML-based Semantic Web Technologies, i.e., RDF (http://www.w3.org/RDF/) and
Dublin Core Metadata Initiative (http://dublincore.org/) for all document formats. Also,
some document formats (e.g., MS Word) allow one to store meta-information inside the
document in the proprietary meta-data format.

To achieve the most seamless workspace integration the engine is implemented as
a Java-based web service with several clients, one of which—as an example—is auto-
matically invoked when a document is saved by the commonly used word-processor.
This client is .Net/C#-based, whereas other clients, i.e., for batch processing of huge
amounts of documents, are implemented in Java [4]. Even though there are some teeth-
ing troubles, web services seem to offer great opportunities for easy and efficient enter-
prise application integration in certain use scenarios.

As one of the next steps, the automated meta-tagging engine will be integrated with
the content management system of Dresdner Bank. Thereby the content creating au-
thors are supported to enhance the quality of meta-tags used within the Intranet without
additional effort and as a consequence to improve the quality of search results.

4 Summary and Conclusion

In the first part, we presented a large-scale system for FX traders. The salient features
are a very peculiar distribution and replication mechanism for structured on-line rates
needed in the calculation of the prices of FX products, plus the object-oriented imple-
mentation of the rules and usances in FX trading. It was shown that a clever combina-
tion of state-of-the-art communications, database and software engineering products
and technology and a peculiar partitioning of the functionality between the client and
the server side could result in an efficient, scalable, distributed system supporting hun-
dreds of trader workplaces.

In the second part we presented an architecture for efficient retrieval of huge
amounts of unstructured information. The architecture and the implemented modules
comprise indexing tools based on linguistics, and a visual retrieval interface to integrate
pre-existing document repositories, as they are always found in large companies. On the
knowledge creation side of the process those tools liberate the author of a document
from annotating it, by extracting keywords automatically. These tools allow for nearly

276 Peter Peinl and Uta Störl

maintenance free indexing, and do not necessitate previous model building or continu-
ous supervision by expensive experts. Natural language technology is the main enabling
factor, which together with an intuitive graphical visualization makes the described
tools a valuable instrument in a knowledge intensive working environment.

References

[1] Bernstein, P.; Hsu, M.; Mann, B.: Implementing Recoverable Requests Using Queues, in:
ACM SIGMOD Conference, 1990, pp. 112-122

[2] Birman, K.: Replication and Fault-Tolerance in the ISIS System, in: Symposium on Oper-
ating Systems Principles (SOSP), 1985, pp. 79-86

[3] Birman, K.; Schiper, A.; Stephenson, P.: Lightweight Causal and Atomic Group Multicast,
in: ACM Transactions on Computer Systems, Vol. 9, pp. 272-314, August 1991

[4] Brandt, S.; Cavar, D.; Störl, U.: A Real Live Web Service using Semantic Web Technolo-
gies: Automatic Generation of Meta-Information. Proc. On the Move to Meaningful Inter-
net Systems (DOA, CoopIS, ODBASE 2002), Irvine, CA (2002)

[5] Cavar, D.; Kauppert, R.: Strategien für die Implementierung IT-basierter KM-Lösungen:
Minimal invasive Systeme. In Ch. Prange (Ed.): Organisationales Lernen und Wissens-
management – Fallstudien aus der Unternehmenspraxis. Gabler Verlag (2002)

[6] Chan, A.: Transactional Publish/Subscribe: The Proactive Multicast of Database Changes,
in: ACM SIGMOD Conference, 1998, p. 521

[7] Coulouris, G.; Dollimore, J.; Kinderberg, T.: Distributed Systems: Concepts and Design,
Addison-Wesley, 1994

[8] Daniels, D.; Doo, L.; Downing, A.; et al.: Oracle's Symmetric Replication Technology and
Implications for Application Design, in: ACM SIGMOD Conference, 1994, p. 497

[9] DeRosa, D.: Options on Foreign Exchange, John Wiley & Sons, 1999
[10] Elmagarmid, A.: Database Transaction Models for Advanced Applications, Morgan

Kaufmann Publishers, 1992
[11] Freytag, J.C., Manthey, R.; Wallace, M.: Mapping Object-Oriented Concepts into Rela-

tional Concepts by Meta-Compilation in a Logic Programming Environment, in: Advances
in Object-Oriented Database Systems, LNCS, Springer, Vol. 334, pp. 204-208

[12] Gawlick, D.: Message Queuing in Oracle8, in: ICDE Conference, 1998, pp. 66-68
[13] Gray, J.; Reuter, A.: Transaction Processing Systems, Morgan Kaufmann Publishers, 1993
[14] Härder, T.; Reuter, A.: Principles of Transaction-Oriented Database Recovery, in: ACM

Computing Surveys, Vol. 15, No.4, 1983, pp. 287-317
[15] Lebeth, K.: Semantic Networks in a Knowledge Management Portal. Proc. Advances in

Artificial Intelligence (KI/ÖGAI 2001), Vienna, Austria (2001) 463-366
[16] Lebeth, K.; Lorenz, M.; Störl, U.: Text Mining based Knowledge Management in Banking.

In: Zanasis, A. (Ed.): Text Mining and Its Applications. WIT Press, April 2005
[17] Luca, C.: Trading in the Global Currency Markets, Prentice Hall, 1995
[18] Peinl, P.: Design and Implementation of a Large Scale Online/Real-time Information Sys-

tem for Foreign Exchange Trading, Technical Report, University of Stuttgart, 1999
[19] Reuters: Reuters Market Data System, http://about.reuters.com/productinfo/rmds/
[20] Zanasis, A. (Ed.): Text Mining and Its Applications. WIT Press, April 2005

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 277-292, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Intermediate Information System

Forms Mutual Trust

Dieter Steinbauer

Schufa Holding AG, Germany
dieter.steinbauer@schufa.de

Abstract. On the Internet, business transactions between anonyms are being
made on a minute cycle. How can confidence between such business partners
be obtained? For this purpose, an organization called the “credit bureau” ex-
ists in all countries having a functioning free market. In Germany, the leading
credit bureau is the SCHUFA.
On the one hand, a credit bureau operates an information system which sup-
plies for the credit grantor data about the credit-worthiness of his clients. On
the other hand, the credit bureau offers the customer the possibility to docu-
ment his reliability to the contractor or the credit grantor, respectively. Of its
own accord, the credit bureau strictly commits itself to neutrality and only
gives data to credit grantors that are relevant for the credit granting itself.
This procedure prevents the system from being abused thereby alienating
customers.
In many branches, the credit-granting process is highly automated. Via sta-
tistical methods the data of the credit bureaus are condensed into scoring sys-
tems. Via correlation of scores, equivalence classes of customers are being
formed according to their non-payment risk.
The final credit decision is not only based on the data and the score of the cus-
tomer in question but obviously also on the data which the credit grantor al-
ready possessed or which he was collecting since the contract was concluded.
An integrated decision support system for credit processing starts at the point
of sale. It supports an appropriate computer-based dialogue and it includes a
rule engine in which the rules for risk assessment are integrated. The infor-
mation system of the credit bureau can be used in an interactive way.
While a credit is used, the non-payment risk and its probability are of sub-
stantial interest. For this purpose, a special monitoring process has to be es-
tablished.
In summary, the credit-bureau system combines several techniques of com-
puter science in an interesting way. You will find everything from database
technology, via mathematical/statistical methods and rule-based systems to
Web-based communication.

278 Dieter Steinbauer

1 Introduction

A credit bureau is the ancestral model of a commercial data base. The data collection
concerning the credit-worthiness and credit standing is almost as old as trade itself.

 In a free market economy, granting a credit to a business partner and relying upon
the repayment belongs to the basic principles of economy. Originally, trade was the
only area where you could find consumer credits, the granting of a credit relying upon
the settlement of the debt.

In former times, you could drink on tick in your local pub, where a chalk board was
placed on the wall on which the regular customer´s debt was openly written. Visitors
could immediately find out who was well known and thus was creditworthy. There were
negative entries (the debt had not been paid back on pay-day) and positive entries (one
actually was on the list). Not being on the list meant that you were not creditworthy,
either because you were not known or because you were not trustworthy.

Today, we make business on the internet. How well acquainted are business part-
ners there? At ebay’s, for example, there is a rating system working with asterisks
showing the performance of buyers and sellers; but can we confide in this system?

When two parties close a deal and money and goods are not being exchanged at the
same time, a credit or economic risk is being created. Obviously, the party which deliv-
ers in advance wants to minimize this risk or at least wants to take the risk consciously,
thereby following one of the slogans “nothing ventured, nothing gained” or “there is no
chance where there is no risk”.

In order to meet these requirements, in market economies all over the world credit
bureaus are being established providing potential credit grantors with credit biographies
of their customers [3]. Credit bureaus of this type are working on a commercial basis
which means one has to pay for the information which is basically related to private per-
sons. The first credit bureau was founded in New York around 1830. In Germany, SCH-
UFA (“Schutzgemeinschaft für allgemeine Kreditsicherung”) as the first credit bureau
was founded in Berlin in 1927 [7].

2 The Credit Bureau — Benefits for the Credit Grantor and
the Consumer

The basic purpose of this business does still not have changed: A credit bureau protects
a credit grantor against default risk and a consumer against over-indebtedness. The
credit bureau creates confidence between credit grantor and client, which is essential for
a credit business. Using this procedure the credit grantor is protected against undesired
default risks which helps to minimize the interest rates as the criterion default risk has
to be taken into less consideration. Another advantage is the increasing mobility. Via
the information exchange between the various credit grantors, the consumer is able to
prove his credit-worthiness anywhere at any time (see Fig. 1).

An Intermediate Information System Forms Mutual Trust 279

3 Data Base as Mutual Trust — The Principle of Reciprocity

The main core of a credit bureau is its data base where the credit history of a consumer
is being stored. This data base forms the basis for all further processes referring to the
risk evaluation of future credits and possible defaults [8].

Additionally to the master data referring to persons (first name, surname, name of
birth, birth date, birth place, current and previous addresses), information is also stored
on current and past contractual relationships (credit grantor, type of credit, duration of
credit, status of credit) in this data base.

The data is completed by third-party information provided by public registers such
as the Local Court (affidavits, detention orders to enforce affidavits) or the German
Federal Gazette (i.e., bankruptcy proceedings). Additionally, information of persons
provided by contractual partners or third parties is maintained, e.g., change of address.
 In contrast, information related to assets, income, profession, social class, marital sta-
tus, religious or political attitude, etc. is not being stored.

As far as data in the data base is concerned, we demand the following quality re-
quirements:

• completeness
• up-to-dateness
• correctness
• clearness
• availability

Referring to the single quality characteristics the following is to be added:
Completeness means that, using the given data basis, the credit grantor has to be

able to get a complete picture of the current obligations of the consumer. Therefore, a

consumer

credit

bureau

credit

grantor

information

on credit

worthiness

neutral and

reliable

information

on personal

credit status

credit

transaction

riskrisk evaluationevaluationbenefitsbenefits

Fig. 1 Interdependency between Consumer – Credit Grantor – Credit Bureau

280 Dieter Steinbauer

credit bureau is interested to win over as many credit granting branches of trade as pos-
sible for the delivery of information.

Up-to-dateness means that the information concerning the client should be up-to-
date. The credit bureau´s report represents a snapshot of the obligations of the credit ap-
plicant at the moment of the request to the credit bureau.

The requirement of correctness is self-evident. The data entered into the data base
has to meet the truth.

Clearness aims at the possibility of mistaken identities. This applies especially for
countries such as Germany where according to the Privacy Law the processing of non-
ambiguous distinguishing identity marks is forbidden. On the other hand, there are EU-
countries like Denmark, Poland, and Italy where this does not apply, whereas the posi-
tive identification via non-ambiguous distinguishing identity marks is even compellent
in Sweden and Belgium. Consequently, complex search- and postprocessing proce-
dures are necessary in Germany to avoid mistaken identities.

Availability of information results from the need to offer a twenty-four-times-seven
credit granting. Due to Internet trade, break times in which credit granting is not possi-
ble cannot be tolerated.

The principle of reciprocity is the practical and theoretical basis for the information
structure in the data base, where information of various credit granting institutes is con-
solidated. The principle of reciprocity assures that only the contractual partners who re-
port information will as well receive information. This also applies for the granularity
and the semantic content of this information. As a consequence, a contractual partner
who reports credits (positive information) will also receive information on current cred-
its (primarily banks). A contractual partner who only reports the non-compliance with
contractual obligations (negative information) will only receive this sort of information
(generally retailers).

Which branches are partners of the credit bureau? Typically, the partners are among
the following kinds of institutions or organizations:

• banks and credit institutes
• trade and mail order companies
• telecommunication companies
• power authorities
• housing associations
• insurance companies
• collection agencies
• eCommerce companies

It should be especially emphasized that information concerning a consumer in a report
to the credit grantor has to be filtered according to strict rules. As mentioned above, con-
tractual partners of a credit bureau do not receive all information related to the consum-
er. Additionally, the name of another contractual partner is never disclosed in the re-
port—only the very existence of a business connection as well as the status and the type
of credit relation are being revealed. This is simply a question of discretion: The credit
grantor who made the request will not find out which other companies also have this

An Intermediate Information System Forms Mutual Trust 281

prospective credit client among their clientele. Anonymity and neutrality are very im-
portant in order to prevent the customer to become the target of competing marketing
campaigns.

3.1 Structure and Restriction of the Information

Of course, the central issue of a credit bureau pertains to the contracts of loans respec-
tively the business relationship between the consumer and a contractual partner of the
credit bureau. This business connection has to be considered in a chronological perspec-
tive: it has to go through a sequence of phases such as the actual request for the credit,
the credit decision, the paying off, and the debt settlement. Additionally, the terms con-
sumer, borrower, and client, respectively, are of interest because they cover interesting
criteria concerning the credit-worthiness.

For the credit bureau, the contractual partner possesses another quality than the con-
sumer as there exists an actual business relationship between both of them. In this rela-
tionship, especially access control and information rights have to be regulated. Fig. 2
shows a simplified extract of the data model of a credit bureau. A simplified notation of
the object-type method was used [4, 5].

Extract from the Data Model of a Credit Bureau

(in simplified object-type method)

information ref. the

business relationship

information ref.

the consumer

reciprocity-

contract

association/

formation

additional

contract
company

contract organisation

public

offices

supplier

data supplier contractual partner
group of contractual

partners

consumer

contractual partner/

consumer

relationship

consumer

information ref.

master file data

of the consumer information from

public

registers

further information

ref. the consumer

Fig. 2 Excerpt from the Data Model of a Credit Bureau

282 Dieter Steinbauer

3.2 Gain of Information

Gaining information is achieved on the basis of the principle of reciprocity. Contractual
partners automatically report to the credit bureau the credit information referring to the
appropriate consumer. The single phases of the credit history are being checked on
plausibility and afterwards are stored in the data base.

It is obvious that the close interaction between the credit decision system and the
credit monitoring system of the credit grantor on one side and the application system of
the credit bureau on the other side leads to cost-effective solutions. In contrast, the data
delivery of third parties like the Local Court, etc. is more complex as the necessary
process integration is often missing in such cases.

3.3 Transfer of Information

The transfer of information is along these lines. Enabled by their authorization and serv-
ice profiles, the contractual partners have access to the information. Thus, the usual
chronology has to be implemented: identification, authentication, and proof of the serv-
ice profiles. As already mentioned, the information for the contractual partner is espe-
cially filtered. As a consequence, the appropriate profiles have to be lodged in the con-

Process of the Creditworthiness Check

request regarding a person

[]

Authorisation check

identify contractual partner

authenticate contractual partner

check product authorisation

Pre-Processing

verify product parameter

regularise personal data

regularise address data

Product processing

identify consumer

store reason for request

find out information

calculate score

filter information

preprocess information

Post-Processing

accounting and billing

produce follow-up report

compile statistics

Fig. 3 Process of the Credit-Worthiness Check

An Intermediate Information System Forms Mutual Trust 283

tractual partner´s administration and have to be activated, if needed. This process is
completed by quality-securing pre-processes referring to identification and address nor-
malization, as illustrated in Fig. 3.

After the pre-processing phase, the actual access to the information, the credit-wor-
thiness evaluation (score), and the contract-specific filtering can take place. During the
post-processing phase, the information necessary for billing and for proof of truth and
fairness, etc. are edited. The follow-up reports which are automatically sent to other
contractual partners will be explained later.

4 Scoring — Risk Evaluation Based on the Common Data
Base

So far, we have described the various aspects of the data base of a credit bureau where
the credit histories of consumers are maintained. How is this sensitive data used? There-
fore, the introduction of scoring systems was an important development in order to eval-
uate credit-worthiness. Actually a scoring system is nothing more than a probability in-
dex for possible debt losses. The tantalizing question is how this probability index is be-
ing appraised?

In an early stage, so-called generic scores were created which were only based on
the experience of risk managers. Special rating agencies still do possess the necessary
knowledge which is being lodged in score cards in the form of decision and evaluation
rules. Based on their own data stock, credit bureaus developed their own scores in order
to forecast the credit-worthiness in the new- and stock-customers business.

• Credit-Scoring is the quantitative, resp. objektive risk measurement

compared to

• the qualitative risk definition during the manual credit processing:

credit score = probability of default (PD)

Score Card Development

time
T0 T1

historical

data

historical

performance

data

score card development score card in production

T0 T1

request request

data

actual future

performance

data

Fig. 4 Score Card Development

284 Dieter Steinbauer

The development of a score card (see Fig. 4) as probability index for a possible debt
loss is based on mathematical/statistical methods. Via regression calculations, equiva-
lence classes can be generated which are significant for the non-payment risk of a credit.
To improve their accuracy, a large amount of spot checks can be drawn (up to 2 million
records). This is followed by a t0 – t1 analysis which computes certain criteria indicating
that a borrower will or will not pay back his credit. This mere mathematical/statistical
process allows an exact contract selectivity with respect to good and bad risks both for
the credit decision (application score) and for the risk evaluation of the credit stock.

 Obviously, not only the profile data of the consumer influences the score, but also
the purpose of the credit and, of course, the branch of the credit grantor. Customers with
an identical profile may exhibit a differing payment behavior at distinct credit institutes.
Therefore, it is reasonable to produce different score cards even within one branch like,
for example, the banking sector which may be divided into

• major and private banks,
• savings banks,
• cooperative banks, and
• mortgage banks.

Fig. 5 tries to indicate the conceivable benefits to be accomplished when the selectivity
of the risk assessment can be improved.

Which benefits does the improvement of the selectivity bring?

increase of the gini-coefficient

from 0,55 to 0,67

improvement of the

detection of the bad

from 38% to 51%

Depending on the

quantity structure there

are economies of scale

of multiple mio. € p. a.

• risk cost

• process cost

good

bad

Fig. 5 Benefits of the Selectivity Improvement

An Intermediate Information System Forms Mutual Trust 285

5 Decision Support at Point of Sale

After having sketched the risk evaluation procedure, we will briefly outline the process
leading to a credit decision. Using the institution “credit bureau”, the credit decision
process is facilitated and accelerated not only for the contractual partner but also for the
consumer. This applies for credits at banks, online orders at mail order companies as
well as mobile phone contracts.

The application scoring allows an efficient execution of the credit processing. Its
central mechanism is a high-capacity rule-engine which contains the credit granting-
policy of the credit grantor. The credit bureau´s data, its score or the score variables
form the basic contribution to the accuracy of the credit decision—this process is visu-
alized in Fig. 6.

6 Integrated Scoring Systems

The development of integrated score cards in which the selective variables of the credit
bureau are combined with the information delivered by the consumer in his credit re-
quest (e.g., income) and the information already stored at the bank (e.g., assets) increase
the forecast’s accuracy.

Integrated scoring systems evaluate this information and, thus, allow a more precise
credit granting-policy in order to reach a justified decision. Via score cards, the non-
payment risk of a certain customer is forecasted. All customers are divided into equiv-

Decision Systems & Tools for Request Processing

2 31

5
4

credit bureau

data centre

request data address data Credit-report

credit decision
additional data sources

(blacklist, whitelist, …)

Rule Engine

credit lending-strategy

credit request

credit decision

First name:

ageageAge:

Street:

Postcode:

Town:

Surname:

to apply for:

Circumstances:

Credit:

Credit type:

Amount:

Income:

Cash credit

Credit decision: SCHUFA report:

First name:

ageageAge:

Street:

Postcode:

Town:

Surname:

Circumstances:

Credit:

Credit type:

Amount:

Income:

max. 3.000 €

only with

obligor
Texts:

Cash credit

cleared court order

Fig. 6 Decision Systems & Tools for Request Processing

286 Dieter Steinbauer

alence classes. According to the non-payment risk, each of these equivalence classes
correspond to a certain type of credit offer.

 In order to react on current market developments, it is essential for the credit gran-
tor to have simple tools with which he can easily administer and change his credit grant-
ing strategy—for example, which credit offer will be assigned to which equivalence
class. The system architecture enabling this required flexibility is sketched in Fig. 7.

7 Automation of the Credit Transaction Process

In order to demonstrate the various possibilities of automated credit transaction proc-
esses, it is best to have a closer look at the online credit granting of a direct bank. As
illustrated in Fig. 8, such a system consists of two central components: the Web inter-
face incorporating the presentation component which processes the dialogue with the
users and the credit application with the rule engine. In this way, a user-friendly access
to the bank is guaranteed for the customers. A credit request is immediately possible at
any time. Additionally, the system operates via the Internet and, thus, its connectivity
may be exploited as well.

 The application enables a flexible and fast reaction to changing market situations
and thus the bank can easily update its conditions. Furthermore, the process flow and
the decision rules can be monitored; in this way, adaptations / changes can be quickly
accomplished.

- branch

- call-centre

- subsidiary

company

- contractual

partner

rule engine

-core

rule engine

-core

NT

stock

systems

data centre-service specialist department
C

o
n

tr
a

c
tu

a
l

P
a

r
tn

e
r
s

S
C

H
U

F
A

point-of-sale credit application

back office

application

maintainance /test

system (NT)

credit bureau

application

data centre

score rule

engine

rule engine

-core
rule engine

-core

NT

maintainance /test

system (NT)

Decision Systems & Tools - System Architecture

Fig. 7 Decision Systems & Tools—System Architecture

An Intermediate Information System Forms Mutual Trust 287

 To start a credit application, the personal data of the consumer is collected. For this
purpose, the compulsory household calculation is relevant. The applicant is also com-
pelled to present his credit obligations and his earning capacity. Of course, information
concerning the credit itself like amount, duration, payment terms are also needed (see
Fig. 9).

 Having this information available, the bank can evaluate the credit request by
means of a decision system. The basis for this evaluation is formed not only by the in-
formation delivered by the client himself but also via information already contained in
the bank’s data base concerning this client and additionally via the credit bureau’s in-
formation on further obligations of the customer. According to the information resulting
from these three data sources combined with the bank’s credit granting strategy, the
bank submits an offer to the customer. Of course, the bank will not take the credit risk,
if a so-called “hard” negative criterion exists like, for example, a private insolvency pro-
ceeding. For the credit evaluation, the only relevant factor interesting for the bank is the
non-payment risk for the credit request in question.

The acceptance of the credit bureau’s clause (SCHUFA clause) is important, be-
cause the consumer hereby accepts the receipt and transfer of information to/from the
credit bureau (SCHUFA) according to the regulations of the Privacy Law (see Fig. 10).
After the information delivered by the consumer and by the credit bureau is available,
usually an individual score for this specific credit decision situation is being generated
thereby also referring to information in the bank´s data base. As a result, a direct and
binding credit offer is submitted to the consumer. An individual evaluation of the non-
payment risk for a certain credit request enables the bank to consciously control this
risk. Hence, decisions formerly based on the experience of a loan officer are made on
the basis of fixed rules combined with the extra information of integrated score cards.

Finally, the credit is being granted according to the proposed conditions.

web-interface
rule for decisions

(set of rules)

configurator support components

product „online credit“

is managed by two

applications

individual adaptation

possible at any time

via support components, the

contractual partner defines the set of

rules with which decisions are

being automatically made

via configurator the user interface

is defined in order to manage

the process flow

online credit

Fig. 8 Automation Phase I

288 Dieter Steinbauer

1. call

limits for credit

amount (min./max.)

duration (min/max.)

are being fixed

• point of sale (salesman)

• internet

• subsidiary (self-service data terminal)

call for

internet application/

initialisation

1st set of rules

data transfer

selection of set of rules

Fig. 9 Automation Phase II

input of basic data:

•amount of credit

• credit period

•monthly redemption rate

2. call

calculation of the not binding

offer

sample calculation:

- based on amount of credit,

credit period and monthly

redemption rate
customer receives

preliminary offer

Input

credit request

sample calculation 2nd set of rules

input of personal data:

•name

•address

•customer connection

•2. borrower (optional)

•acting on own account

yes/no

3. call

checkup of the decision criteria

individually defined in the set

of rules

k.o. criteria

not applicable
k.o.-criteria

applicable

so-called cut-off-criteria

defined by the bank

•Request for Commitment to

SCHUFA-clause

continuation

of application

address data 3rd set of rules/filter

notice to

the customer

Example:

• majority absolutely necessary

for credit application

• different trading area /

new customer

An Intermediate Information System Forms Mutual Trust 289

4. call

checkup of creditworthiness

according to individual

presetting of the credit

institution

commitment to

SCHUFA-clause

SCHUFA-inquiry

for further information

on the person

input customer data:

•marital status

•contact

•profession
5. call

SCHUFA-report

and

3rd set of rules

Fig. 10 Automation Phase III

6. call

calculation of the score

value according to

individual guidelines of the

credit institute

example:

•individual score

•with SCHUFA score

offer to

customer

checkup of the decision criteria

individually defined in the set

of rules

call for the so-called cut-off-

criteria defined by the bank

is again possible

further information

on the person
individual scoring

input of household-data:

• income

•expenses

•account-keeping fee

•size of household

• input of other credits

checkup positive

decision support

system vote „go“

checkup negative

notice

to customer

7. call

the complete application forms

and a check-list with hints for the

further proceeding are made

available to the uer in a pdf-file

Transfer of the rest data to

backoffice of the bank for the final

processing and adoption of the

data into the system of the bank

request for credit
completion

checkup of the entered data

and credit request

290 Dieter Steinbauer

8 Risk Evaluation and Risk Management of the Credit
Stock

 In addition to credit request decisions, other opportunities in the life cycle of a credit
exist where mathematical score models can be useful. Next to the evaluation of the cred-
it stock of a credit granting institute, forecasts for the prospect of success of reminders
are important in case of payment troubles or the affinity for further credits. Due to the
necessary risk precaution, the evaluation of the credit stock plays a special role. Accord-
ing to the Basle Commission for the Credit Granting Economy, banks have to obey cer-
tain rules referring to the forecast horizon and the possible default risk [1].

8.1 Stock Scoring

Following the requirements of the Basle Commission, the development of Basle II-
score cards enables banks to periodically automate the process regarding forecast hori-
zon and default risk. In this situation, the rule engine plays the central role. Additional-
ly, flexible reporting functions support the risk controlling (as shown in Fig. 11).

Fig. 11 Decision Systems & Tools—Basel II Solution

An Intermediate Information System Forms Mutual Trust 291

8.2 Follow-Up Report

The evaluation of the credit stock uses a statistical analysis. Additionally, the credit
grantor still needs the individual examination of the single credit risk. Therefore, credit
bureaus offer so-called follow-up reports. The credit bureau informs all contractual
partners who have granted credits to a consumer on payment troubles or a significant
score pejoration of this certain consumer. Via this triggered information, the credit
grantors are able to individually adjust their risk evaluation of this credit and to take
steps to minimize their risk, respectively. Technically speaking, these follow-up reports
correspond to the normal reports. The only significant difference consists in the infor-
mation being triggered by the credit bureau itself.

9 Perspective: “Glass Citizen” or “Mobile Trust”

This article shows that it is essential for the economy in a mobile world to create mutual
trust between business partners. Ages ago people followed the slogan: “One knows
each other and one helps each other”. But times have changed. The high profile of each
other is now replaced by the risk evaluation of a neutral trust-worthy institute. The re-
liability of the credit bureau´s data and the due diligence necessary are basic require-
ments for this procedure. Obviously, a credit grantor will only put trust in someone who
deserves it, that is, who will settle his debts. It is always the solidarity community of all
borrowers who will have to bear the expenses for increased credit cost caused by the
non-payment mentality of single consumers. Thus, for the good of all concerned parties,
the credit bureau supports the credit grantor in the evaluation of credit-worthiness and
willingness to pay. Obviously, only correct information provides trust.

The keyword “Glass Person or Citizen” meaning the absolute transparency, the loss
of privacy is the counter-value to information. Obviously, it is a question of morale and
ethics in many areas of life, whether or not we will be allowed to withhold information
or even deceive someone. Of course, in certain situations of life everybody has the right
to consciously do this. But the individual protection of the consumer’s concerns postu-
lated in the Privacy Law must not lead to a protection of criminals. Therefore, we al-
ways have to balance between the individual protection of the consumer’s concerns and
the legitimate interest of the credit grantor. As a consequence, the credit grantor should
only receive the information he will need for a proper credit decision and risk evalua-
tion. Additional information is simply not to be granted. On the other hand, the credit
grantor has a highly legitimated interest to minimize his risks.

Considering the above mentioned balance of interests, the protection against misuse
of the credit bureau’s data is a top-ranking issue. In order to achieve this goal, all ap-
propriate technical, organizational, and legal precautions have to be taken [2].

It is helpful if everyone knows which data is being stored on him personally. Addi-
tionally, the information flow concerning a consumer has to be strictly processed ac-
cording to fixed rules. The consumer should be able to put trust in the institution of the
credit bureau which always strives for mirroring a correct picture of his credit-worthi-

292 Dieter Steinbauer

ness. The credit grantor should trust in getting a sufficiently correct and complete pic-
ture of the credit-worthiness of the consumer. Incorrect entries need a fast correction;
such an action should always be combined with a consultation of the credit grantor who
originally gave the wrong data input.

Careful handling and maintenance presumed, the data base of a credit bureau cre-
ates a real win-win-situation for both the credit grantor and the consumer [6]. Thus, con-
sumers are enabled to act in economic freedom and credit grantors are enabled to put
trust even in unknown clients.

Acknowledgement

Many thanks to Mrs. Sibylle Weisenborn for editing, translating, and formatting this
text. Without her dedicated efforts this contribution would not have been possible.

References

[1] Basle Committee on Banking Supervision: New Capital Adequacy Framework. Consulta-
tive Paper. Mimeo, Basle (1999)

[2] Klöpfer, M.: Informationsrecht. C.H. Beck-Verlag, München (2002)
[3] Miller, M.J. (Editor): Credit Reporting Systems and the International Economy. MIT-

Press, Cambridge MA (2003)
[4] Ortner, E.: Fachsprachlich normierte Anwendungssysteme – Eine neue Generation von

Applikationssoftware für Unternehmen mit globalen Geschäftsbeziehungen. In: Informa-
tion als Erfolgsfaktor. Bernd Britzelmaier / Stephan Geberl (Hrsg.), 2. Liechtensteinisches
Wirtschaftsinformatik-Symposium an der FH Liechtenstein. B. G. Teubner Verlag, Stutt-
gart etc. (2000), S. 333-347

[5] Ortner, E.: Wissensmanagement, Rekonstruktion des Anwendungswissens. (Informatik-
Spektrum 23), Heidelberg (2000) 2, S. 100-108

[6] SCHUFA HOLDING AG: Annual Report 2003. Wiesbaden (2004)
[7] SCHUFA HOLDING AG: 75-Jahre SCHUFA. Wiesbaden (2002)
[8] Steinbauer, D.: Kreditvergabe mit der SCHUFA. (DSWR, 5/2004), München (2004),

S. 119-121

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 293-314, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Refinement in a Market Research

Applicat ions’ Data Production Process

Thomas Ruf, Thomas Kirsche

GfK Marketing Services, Germany
{thomas.ruf, thomas.kirsche}@gfk.de

Abstract. In this contribution, we will show how empirically collected field
data for a market research application are refined in a stepwise manner and
enriched into end-user market reports and charts. The collected data are treat-
ed by selections, transformations, enrichments, and aggregations to finally
derive new market knowledge from the raw data material. Besides data-ori-
ented aspects, process- and organization-related aspects have to be consid-
ered as well to ensure the required product quality for GfK Marketing Serv-
ices’ customers, which have known GfK for decades as a top-10 player in the
international market research area. Based on an ongoing example from the
panel-based Retail & Technology application domain, we will show how de-
centrally collected and pre-processed data are transformed into integrated,
global market knowledge in a network of world-wide companies.

1 Introduction

The GfK Group, ranked fifth among market research companies worldwide, actively
participates in the following five fields of business: Consumer Tracking, Health Care,
Retail & Technology, Media, and Ad Hoc Research. In the fiscal year of 2003, the GfK
Group has achieved a turnover of 595 million Euro (previous year: 559 million Euro).
Apart from 15 branches in Germany, more than 120 enterprises and shares in 57 nations
belong to the GfK Group worldwide. Approximately 1,500 of currently close to 5,500
employees are working in Germany.

In the field of Retail & Technology, the GfK Group regularly provides their clients
from trade and industry with information services that are gained on the basis of con-
tinuous surveys and analyses of profits of technical consumer products in retail trade in
48 countries worldwide. In the fiscal year of 2003, this line of business generated turn-
over of 166.7 million Euro. The field of Retail & Technology is represented by GfK
Marketing Services (GfK MS).

The processing of data through Retail & Technology from the industry to market
reports is a process far from consisting of simple mathematical operations. Even though
operations such as additions and average calculations are executed, the value added to

294 Thomas Ruf and Thomas Kirsche

the end-product lies in the refinement process, which is implemented as a business proc-
ess with system support. Similar to an engineer, who applies and varies certain proce-
dures for the construction of a component, GfK employees apply acknowledged and in-
dependently developed techniques to create reports, which actually reflect market
events, from the data material. Artifacts from the random sampling as well as transfer
and processing errors have to be identified and eliminated.

Concerning the software level, the refinement process is accompanied by a data
production system that has been developed by GfK Marketing Services themselves. The
data production system is a “data pump”, which forwards data from one processing step
to the next. Contrary to production systems for consumer goods, in which individual
components are combined to assembly groups and, eventually, to the final product, the
data change morphologically due to the processing. The information content can be in-
creased and the entropy decreased respectively by either eliminating interferences or
bundling data.

In this chapter, major steps of the refinement process will be explained, always with
regard to their interplay with the data production system. In order to do so, a general
overview of the initial situation of periodic market research and the data production sys-
tem will be provided in the next section. In the subsequent sections, it will be shown
how the enrichment takes place in the master data system, the data acquisition system,
the analysis system, and the reporting system. An outlook will conclude this paper.

2 Data Production at GfK Marketing Services

To get an understanding of the products of the field of Retail & Technology, the first
thing to be explained in this section is the basis on which to work. Following this, there
will be a short overview of the whole data production system.

2.1 Initial Scenario for the GfK Products

To discuss the business process, a hypothetical example shall be used: a potential cus-
tomer enters a local Media-Markt branch that is located on the outskirts. This Media-
Markt branch is an outlet of the distribution channel of technical supermarkets. This
channel of distribution is supported with certain advertising programs for which an ad-
vertising agency is responsible. Furthermore, the branch is characterized by annual
profits, sales area, available parking areas, and, of course, its geographical location. The
customer is interested in a special model of a cell phone of which he or she knows prop-
erties such as weight, standby time, Bluetooth connection options, and many more.
However, the customer considers the price too high. Therefore, he or she approaches a
retail dealer nearby, who cannot offer the same cell phone alone though, but who would
sell it together with a 24-month contract and a camera. Eventually, the customer pur-
chases the phone, in a bundle with contract, camera, and an additional battery, which
enabled him to bargain another certain discount.

Data Refinement in a Market Research Applications’ Data Production Process 295

 To represent the market, GfK Marketing Services use the perspective of the con-
sumer. The decisive fact, therefore, is what a consumer has bought in what quantity and
at what price. However, permanent surveying among a statistically sufficient group of
consumers would be too arduous due to the low re-buying rates of technical consumer
goods and, thus, it would be too expensive. Instead, basic information such as quantities
and profits, as well as additional inventory parameters from the industry, are reported
to the GfK. For this, the GfK Group has made respective agreements with the retail in-
dustry. Additionally, the characteristics of the branches and items will be recorded. To
gain those information, business-side researches are conducted. The properties of the
items are either collected by the GfK Group itself or provided by the producers, and
complemented with information from publicly accessible information sources (cata-
logues, Internet).

2.2 Systematics of the GfK MS Product Portfolio

The agreements on data supplies with the industry are usually made under the require-
ment that the business activity (profits, assortment) of the data provider must not be di-
rectly visible from the GfK reports. Rather, it is only acceptable to publish the informa-
tion in aggregated and/or anonymized form. Nevertheless, it should be possible to cre-
ate very detailed reports on the sales activity, divided by sales channels or geographical
properties. These reports, which can also be created from databases in an interactive and
individual way by GfK clients themselves, serve, in the broadest sense, to support busi-
ness-political decisions. These can be decisions of the producers on distribution meas-
ures and weightings; but, similar to Benchmarking processes, they can also provide
brand vs. brand suggestions to a product portfolio. GfK clients from the industry use the
GfK reports for assortment analyses as well as for decision support on which items to
offer.

2.3 Overview of the Data Production System

To be able to connect the supplies from the various numbers of data sources in a mean-
ingful way, but also to enrich the end-product with additional knowledge on the mar-
kets, GfK MS used a data production system for more than two decades [1]. This data
production system was regularly updated and extended. A few years ago, the system
was transferred to a completely new platform and adjusted to the needs of the globally
acting clients. Since then, the system has been called StarTrack (System to Analyze and
Report on Tracking Data) and is shown with its main modules in Fig. 1.

StarTrack has four main modules: IDAS, Preprocessing, Data Warehouse, and
Master Data Management; they cover the major processing steps during the production
process: Data Input & Identification, Production & Analysis, as well as Reporting &
Delivery. The IDAS module (International Data Acquisition System) processes thou-
sands of different data sources every week and transforms the data provided by the in-
dustry, which differ in form and contents, into a consistent analysis base. Here, items

296 Thomas Ruf and Thomas Kirsche

and industry branches are uniquely described; this is the result of a procedure called
Identification, which means assigning industry data to GfK item master data. During
this procedure, assignments already in place will be preserved, and only new or outdat-
ed assignments will be edited every week. IDAS implements the first part of the quality
control based on the data supplies, too.

 The Preprocessing module allows to establish a retailer-overlapping market view
by applying an extrapolation that has been structurally defined earlier. Whether or not
this extrapolation can be used as specified depends on the data actually supplied and on
the continued validity of the assumptions made. During the Preprocessing step, the sec-
ond part of the quality control is executed; eventually, it ensures the market suitability
of the processed data.

 In the Data Warehouse, not only current data are represented, but especially past
values are stored as well. Due to this, it is possible to systematically detect and display
both detailed segmentations of the market within a certain period and market shifts over
the course of time. Apart from its interactive analysis options, the Data Warehouse is
also used as the basis for the creation and delivery of client reports with individual con-
tents and of different formats. These formats range from paper printings and simple re-
port browsers to complex Desktop Data Marts, from which clients can create reports tai-
lored to their individual needs with the help of specific GfK tools.

 The foundation for all StarTrack modules is the so-called Master Data Manage-
ment System. It contains the technical properties of the items sold, the characteristics of
the industry branches, and all information on clients and client subscriptions.

Recently, the StarTrack system has been extended with means to monitor and con-
trol the production workflow [10, 9]. Unlike the production of cosumer goods, data pro-
duction exhibts characteristics that require an means beyond workflow management
and project management [3].

Data input &

identification

Production &

Analysis

Reporting &

Delivery

IDAS

Master Data Management

Pre-

processing

Retailers Clients

Creating value

through knowledge

Fig. 1 StarTrack Main Tasks and Modules

Data Refinement in a Market Research Applications’ Data Production Process 297

3 Data Refinement in the Master Data System

The master data system of StarTrack forms a consistent reference point for all other
components of StarTrack. Consistency is important, because all systems shall work
with a single “truth”, and by referencing the same master data, data can be exchanged
without conversions. Among the master data are all describing information that is nec-
essary for the interpretation of the periodically incoming transaction data. The master
data system, known as MDM (Master Data Management) System, basically comprises
information on items (what has been sold), on outlets (where has it been sold), and on
customers (who gets what deliverable). From the data modeling perspective, the master
data are used for building the dimensions of the Star schema of the DWH, while the
transaction data are used to fill the fact table. The presentation in this section focuses on
the item base; however, many design properties can be found again in both outlet and
customer section of MDM.

3.1 The Concept of Items

Items, sometimes also called products or models, are goods that are offered and pur-
chased by participants in the market. Usually, these goods have certain identifying char-
acteristics. Apart from the actual brand and model description, e.g., Siemens S55 for a
certain cell phone, or Humax PVR8000 for a Set Top Box, these can also be keys. A
key system commonly used throughout Europe is the EAN code, which is usually rep-
resented by a bar code on product packaging. Unfortunately, the same product can ap-
pear with different EAN codes in the market, or an EAN code can be reused for different
products. The EAN code, as well as its non-European equivalents UPC code and JAN
code, are thus not sufficient for the definition of an item.

Therefore, GfK Marketing Services use a concept of items that is based on the sales
market. A product from different series with different EAN codes is listed as one item,
if the differences are not considerably decisive for a purchase; an example would be an
altered production technology.

 The item master system MDM groups millions of items in about 250 product
groups, which in turn are assigned to product group categories and product group sec-
tors. Every item is described by its brand, the name of the model, and a number of up
to 100 properties or function properties—so-called features—respectively. Some exam-
ples are shown in Tab. 1.
All products within the same product group are classified by the same features. How-
ever, the different nature and functionality of non-food items and product groups re-
quire a large variance in the description of features of these products.

298 Thomas Ruf and Thomas Kirsche

3.2 Multi-step and Combined Concepts of Items

Occasionally, the industry attempts to group several products in one offer. For example,
mobile phones are often bundled together with contracts and digital cameras. The cus-
tomer might indeed include this bundle in his decision-making; thus, it has to be record-
ed differently if a certain mobile phone has been purchased alone or in a bundle. In the
master data system, bundles are, therefore, managed both as individual items for sale
and in connection with their respective items. Except for their bundle description, bun-
dles do not have any features. The descriptions can be found at the level of the items
belonging to the bundle.

 Apart from the option of grouping items, there is also the possibility of detailing.
This option is used in all those cases in which the purchase decision shall not (yet) be
documented in detail, but where the detail is necessary for the correct assignment.
Among others, typical examples in this regard are models that are offered in different
colors, patterns, or finishes. Certainly, it might play a role for the purchasers of a mobile
phone whether the cover is sunset-orange, ice-blue, or night-black, but the segmentation
of the market by cover colors is currently not desired or necessary. Therefore, the mo-
bile phone is listed as an item, and the color variants are listed as item details.

Tab. 1 Product Groups and Features (examples)

Product Group
Sectors

Product Groups
(Selection)

Examples for Features and
Their Feature Value

Large Appliances,
Small Kitchen Appli-
ances, Jewellery, Fur-
niture

Washing Machines, Vac-
uum Cleaners, Shavers,
Watches, Kitchen Furni-
ture

Water Consumption (in
litres), Cable Rewind (with,
without), Dust Bags (with,
without), etc.

Consumer Electronics TV Sets, VCRs, Car
Radios, DVD Players

Screen Size (in inches),
Sound System (Stereo,
Mono), TV Norm (NTSC,
PAL, SECAM, PAL/
SECAM multi), Remote
(with/without), Number of
Video Heads (2,4,5)

IT/Telecom Cellular Phones, PCs,
Printers, Software

Band (Single-, Dual- or Tri-
band), Mounting Form
(Mini Tower, Tower, 19”,
Barebone), Pages per
Minute, Application Field
(learning game, entertain-
ment, home office)

Data Refinement in a Market Research Applications’ Data Production Process 299

To be able to handle another specialty of producers, the master data system provides
an additional item concept, the so-called product lines. Similar to items, product lines
have features and represent the properties of a certain product family. All members of
the product family have certain common properties, e.g., Siemens mobile phones S se-
ries. In other features, the items can still differ from one another. The assignment of an
item to a product line only enforces that the assignments for the features of the product
line are the same. From a semantic data modeling perspective, the relationship between
items and product lines is an “is-a” relationship, whereas the one between bundles and
items is a “has” relationship.

 Ultimately, errors during maintenance processes of the item master data cannot be
excluded; either erroneous information have been reported, or errors have been commit-
ted during the input process. MDM provides ordered options for handling and eliminat-
ing such classification errors. The key to this is the storing of item versions, i.e., modi-
fications of an item never overwrite existing data but, instead, they only create a new
version of the item. For example, if an item has been detected that either does not exist
at all or not in the way described, it is not only possible to invalidate the respective item
but it can also be connected to a successor item. This successor relation expresses that
existing transaction data of the old item have to be adopted for the successor item. By
doing so, the market volumes in the reports will be preserved.

3.3 Product Group Schema and Schema Evolution

At first sight, it might appear surprising that the information for a product are subjected
to a continuous modification process. A product has certain properties, and these infor-
mation should be stable. However, because not all properties are recorded from the be-
ginning—and neither is every detail—the need for a continuous modification of the
item master information arises. This also applies to the schema of the product groups.
For example, 15 years ago, it was important to state for a stereo whether it has a noise
reduction system or not. Nowadays, the different kinds of audio systems (Dolby B/C,
Dolby HX pro, Dolby AC3) are the basis for independent market segments of this prod-
uct category.

As a consequence, with regard to the data model of the MDM, the modification
process has to be implemented at the application side. To do so, the set of features be-
longing to a product group is recorded as meta-data. For every relevant, released mod-
ification, these meta-data are used to re-create product group relations according to the
now desired feature list. The structure of the product group relations is intuitive—every
feature is represented by an attribute, and every item is represented by a tuple (see
Fig. 2). The meta-relations mentioned represent the relation between product groups
and features, and the feature properties are stored in additional meta-relations.

In general, features of product groups differ from one another, because, for exam-
ple, refrigerators have different properties than impact drilling machines. Single fea-
tures, however, can be used in several product groups which are, in most cases, related.
For example, a feature called “Image Format” (4:3/16:9) can be found for TV sets, cam-

300 Thomas Ruf and Thomas Kirsche

corders, DVD players, and other product groups. The MDM system accounts for this
multi-usability by storing these features in an identical way for the related product
groups. Thus, it is possible in the reporting systems, too, to create a connection between
the markets that spans several product groups.

The MDM system is probably one of the most comprehensive international item
master databases for consumer products worldwide. Apart from the GfK Group, we do
not know of any other institution with a similarly comprehensive and up-to-date infor-
mation system for the properties of consumer products decisive for a purchase. The val-
ue of these information is so unique that they are distributed as an independent product
under the name Encodex (www.encodex.com).

4 Data Refinement in the Data Acquisition System

The basis for the products of the field of Retail & Technology of the GfK Group is in-
formation from the retail industry. Traditionally, this information has been collected
through field work. However, that caused disadvantages in the degree of detailing and
caused higher costs in case of frequent surveys. Therefore, several thousand retail com-
panies worldwide report important information on the sale of individual products—es-
pecially quantities, prices, and stocks—in a direct, electronic way. The reported data,
so-called tracking data in raw format, are considerably different in
– scope (selected assortment or extraction of the relevant section by MS)
– segment level (branch-specific representation or aggregation on the level of a trade

center)
– granularity (representation of the sales of multi-packs and sets or specification of

components or declaration of the purchase confectioning)
– representation (comprehensive, unique key system or use of retailer-internal abbre-

viations)

Fig. 2 Product Group Relations and Meta-Relation

Product Group Relations Meta-Relation (Features)

ID Feature 1 Feature 2 … Feature n PG Feature Meaning

Item 1 65 … A 1 Water
Con-
sumption

Item 2 27 …. B 1 Screen
Size

…. A 2 …

Data Refinement in a Market Research Applications’ Data Production Process 301

– format (output from standardized merchandise information systems or individual so-
lution)

– quality (identifiability, e.g., by using over-arching classification systems such as the
EAN code)
Often, commercial enterprises can be convinced of providing data for market re-

search only after intense negotiations. The options for normalizing tracking data are
rather limited concerning the differences on the part of the industry mentioned above.

 The task of the data acquisition system IDAS (International Data Acquisition Sys-
tem) is to map the reality of the industry by consistent criteria and structures at a central
place. Basically, the information refer to which items have been sold or purchased when
and where. As facts, the sale and purchase quantities, as well as the price, are at the cent-
er. This information forms the basis for the analysis of the data according to market-
relevant criteria in the Data Warehouse. As a preparatory step for the evaluation, the
data acquisition system transforms the data from a delivery-connected composition
(one outlet, many product groups) into a product-group-oriented composition (one
product group, many outlets), too. While doing so, a temporal grouping of delivery pe-
riods to reporting periods takes place as well.

 The business processes in the GfK MS, especially those of the data acquisition sys-
tem, have been implemented on a system-technical level years before the Data Ware-
house technology gained in importance. If one compares the Data Warehouse termino-
logy currently in use with the processes in the GfK, the data acquisition field would be
called Data Cleansing Process, which is aided by ETL (extraction, transformation, load-
ing) technologies. In the following sections, it will become clear that, beyond this, the
identification process is central; however, it cannot be found like this in common Data
Warehouses.

4.1 Continuous Data Acquisition Process

The starting point for the data acquisition system IDAS is an almost continuous data
flow of information on sales provided by the industry. Nowadays, almost 5,000 differ-
ent data sources are processed with the help of IDAS, most of which are reported week-
ly, but sometimes, on a monthly, daily, or irregular basis, too. Because the evaluations
shall cover certain defined periods of time (usually weekly or monthly), the provision
of the data in a consistent reporting base is necessary, independently from all specifics
of the data sources. The reporting base is created in a snapshot-like manner. The data
acquisition system should, therefore, provide the best available data stock respectively
in a preferably continuous manner. Hence, the data are continuously being replenished.

 In Fig. 3, the main components of IDAS are represented. On the one hand, they are
divided into the fields of extraction, transformation and quality control. On the other
hand, components for the identification of unknown keys, the product group implemen-
tation and the elimination of other delivery characteristics can be found. The two sub-
parts are called IDAS Local and IDAS Central, for the former is used locally in the GfK
branches throughout the world, and the latter is used in the company headquarters.

302 Thomas Ruf and Thomas Kirsche

The main task of the IDAS Local components is to reduce incoming data to the re-
quired amount in an effective way. To do so, the data are accepted in almost any elec-
tronic format as well as in the form of field work data—acquired as optical character
recognition (OCR) data or via handheld terminals (HHT). After various refinement
steps (data formatting, separation), these data are made available to IDAS Central. On
the one hand, IDAS Central accepts the data provided and aggregates them in the so-
called “IDAS Export” into the Data Warehouse downstream. On the other hand, IDAS
Central, with its item identification system WebTAS, enables the components of IDAS
Local to successively deliver the previously unknown data.

All modules of IDAS Central are controlled by a job execution system, which man-
ages the high number of reports coming in from various countries, starts the respective
processing modules, and makes sure that the correct results are forwarded to the respec-
tive module. Thereby, the job execution system has been kept in such a general way,
that it is used by other components of StarTrack.

 An information system reflects the degree of filling of the IDAS output pool. Var-
ious views permit grouping by product groups, deliveries, and dates. Thereby, state-
ments are given not only on available data but also on data not yet identified or even on
cancelled deliveries. Thus, it is possible to choose an optimal point in time for begin-
ning the analysis. Therefore, the management can be based on the final product, i.e., the
client reports.

4.2 Quality Control During the Data Acquisition Process

Many of the sales data, which GfK Marketing Services receive from the industry, are
not very qualified for the needs of the panel business. The data acquisition system con-
ducts this qualification in several steps, which are at first rather raw and then become

Electronic

retailer data

Un-separated

items

Identification

“WebTAS”

Translation

result

Separation

Formatted

retailer data

Output Pool

Data

formatting

Electronic

retailer data

HHT

retailer data

OCR

retailer data

MDM

DWH

Fig. 3 Complete IDAS Architecture

Data Refinement in a Market Research Applications’ Data Production Process 303

finer. The guideline is: As many data details as necessary, but as few as possible, be-
cause with higher processing volume, the costs will rise in all subsequent business proc-
esses. Therefore, the rule is that redundant data should be separated from the required
data in an early and effective way. At the highest possible aggregation level, IDAS Lo-
cal provides required data only. Data that are not needed will be ignored, and question-
able, unknown data will be qualified in a process step called Identification. Only after
the identification, it will be known what kind of item is dealt with, e.g., a TV set or an
alarm clock radio. It goes without saying that only after the identification of the items
such issues as the prices supplied can be checked for their plausibility.

 Quality control for data flows faces the permanent dilemma that, on the one hand,
an early control should be aspired because possible errors can still be eliminated without
delays for the whole process. On the other hand, the quality control shall take place as
late as possible, because the control will be the more qualitative the more comparison
data are available. For example, price shifts can hardly be evaluated based on the report
from one outlet only. However, if many outlets report similar shifts, a control and ac-
ceptance is indeed possible. In addition, as has been indicated above, the item informa-
tion in the data production process are only available to GfK after the identification
process.

 Therefore, a quality check takes place during the data acquisition process, that gets
along without an identification of the data and that draws its comparison values from
the past. In this regard, a data structuring that can be found in many data sources is help-
ful: The items are assigned to product groups which are different from those used by
GfK, though. Therefore, they are called foreign product groups in the GfK. Then, for
every data provision and every foreign (or retailer) product group, the number of data
records, the total of sales, and the profits will be compared with past data. While this
kind of control is still relatively self-evident, experience has shown that data problems
are often caused by reorganization measures, e.g., in the merchandise information sys-
tems of the retailers. To account for that, the keys (item number or the like) used by the
data source will be saved together with the complementary item descriptions (model de-
scriptions or the like). For every data delivery, it will be checked whether or not key and
complementary item description are still linked in the data delivery. If this is not the
case, the item number might have been used for another item. This case is very frequent
with EAN codes, the use of which has to be paid for by the producers, which then again
often motivates them to reuse old, outdated EAN codes after a certain waiting period.

Because EAN codes are keys that are used by different data sources, it is worth
comparing the complementary item descriptions from different data sources, too. They
should describe the same item. If this is not the case for a certain data source, it is most
likely that this data source is using an incorrect EAN code.

 Unfortunately, erroneously positive runaways regularly appear on the agenda. If a
foreign product group is split in two, each individual item with its facts can still be cor-
rect, even though the volumes of the previous foreign product group are cut in half now.

304 Thomas Ruf and Thomas Kirsche

4.3 Identification

Apart from the quality controls in IDAS Local, the data are refined by the so-called sep-
aration module. For this, the separation module uses a unique key of the item. If the
item's key is known from previous data provisions, the separation module can decide
whether the data are needed or not. If the key of an item, e.g., of a newly delivered one,
is not yet available, the separation module takes this item and hands it over to IDAS
Central only once, even if it is mentioned in many outlets.

With the help of the identification tool WebTAS (see Fig. 4) in IDAS Central, the
key of an item is defined and, provided the item is needed, an assignment to an item of
the Non-Food item base is created. The assignment rules are returned to IDAS Local,
and the separation module is able, in a second attempt, to correctly transport the track-
ing data for the item in all outlets to the output interface of IDAS Local, called IDAS
(local) Output Pool. From there, the data will be transferred to IDAS Central—either in
time-controlled or need-controlled manner—for further processing.

In the central screen view of WebTAS (see Fig. 4), the tracking data of the retailer
are shown in the upper half of the screen. In the lower half of it, the items of the item
base from MDM are searched and displayed. The main action in WebTAS for every
(unknown) retailer item is the detection of the suitable item from the GfK item base and,
thus, its assignment for processing purposes. WebTAS permits the sorting and selection
of the retailer items by various criteria to achieve maximum processing speed. For ex-
ample, if a retailer delivers three products of different colors as three data records, the
sorting process will not only display the three unknown products in a spatially close po-

Fig. 4 Central Screen View of WebTAS

Data Refinement in a Market Research Applications’ Data Production Process 305

sition for a better assignment decision, but all three records can be assigned with a sin-
gle mouse click, too. In WebTAS, items that cannot be finally assigned or cancelled im-
mediately can be cached with the help of the PCO (partly classified object) function.
Now, the sorting function can be used to clear the most important (because sold most
often) items with priority.

Depending on the quality of the retailer data and the demanded item assignments,
it is indeed possible for a single person to conduct several hundreds of assignments per
minute(!). A good help here is the suggestion system integrated in WebTAS. For every
unknown item, a short and, thus, manageable list of possible assignments is created
based on text comparisons under consideration of retailer and product group properties.
In the ideal case, the people do not have to search the item base themselves, but they
can select a suggestion. Depending on the quality of the retailer data and the product
group properties, the suggestion system already achieves impressive hit quotas and puts
the correct assignment at the first rank of the suggestion list. A fully automatic assign-
ment appears to be actually implementable in certain situations, but currently it is not
in use yet.

Another advantage of WebTAS is the option of simultaneous processing of items
by several people, according to analysis-oriented priorities. Additionally, the automatic
determination of a possible product group for every unknown item, that results from the
knowledge of similar, already existing assignments, is helpful. With it, those retailer
data records can be specifically processed for which an analysis is pending next.

Apart from pure transaction data, the data acquisition system also provides infor-
mation on the quality, availability, and completion of the transaction data. Based on
these meta-data, the decision on when a meaningful start—and with which part of the
analysis—is possible will be made. The processes in the analysis system will be de-
scribed in the next section.

5 Data Refinement in the Analysis System

The central task of the so-called analysis system in the production process of the GfK
Marketing Services is to create the market suitability of the input data provided by the
industry. Apart from statistics-based procedures, such as the extrapolation definition for
the description of a market model, here, checking and correction steps are prevalent;
they will help detect and clear insufficiencies in the provided transaction data. Ultimate-
ly, the important goal is to bring the reality of the data deliveries in accordance with the
idealized market model of the extrapolation to be able to derive plausible statements on
the market activity for clients.

5.1 Overview of the Evaluation Process

The evaluation process, also called preprocessing, is best visible when the processing
steps belonging to it are presented in a process and data flow diagram. (cf. Fig. 5):

306 Thomas Ruf and Thomas Kirsche

Preprocessing comprises the following steps:
– definition of the underlying data model in the DWH Administrator
– definition of an extrapolation as debit requirement in the DWH Builder
– definition of a DataOrder in the DWH Builder
– processing of the DataOrder in IDAS
– loading the status information from IIS (IDAS Information System) to the DWH

FactTool by opening a LoadDefinition in the FactTool
– quality control of the retailer data and, if necessary, correction by means of the DWH

FactTool
– saving the extrapolation-relevant compensations in the open LoadDefinition
– comparison of the data of a DataOrder existing in the DWH FactTool with the cur-

rent IIS status information (already before loading the actual transaction data)
– execution of the LoadDefinition (from within the FactTool), i.e., loading the model-

based data from the IOP (IDAS Output Pool) to the DWH
– quality control with fine corrections in the QC project (DWH Explorer) and release

to the DWH reporting
– reporting in the DWH Explorer
Whilst the first two steps are only executed once, all subsequent steps have to be per-
formed repetitively reporting period by reporting period.

1

15 November 2002GfK Group DWH Now and Here Thomas RufNon-Food Tracking StarTrack Workflow

DWH

Definition of DataOrders

and sending them to IDAS

3

Extrapolation relevant

compensations

4b

Saving compensations as

LoadDefinition and Load

5a

LoadDefinition

to IDAS

5b

Reporting and

Tools Export:

•Inmarkt Express

•Model Express

•QuickView

•Cobras

•Excel

•...

8

DWH Loader

Execution of

compensations

and loading

into QC project

6b

DWH Explorer

DWH

QC Table

QC

Corrections and

release to DWH

7a+b

DWH Fact Tool

Get DataOrder related data on a

Shop-ProductGroup-

DeliveryPeriod level

4a

DWH Builder

Set-up of

• Base Projects

• Reporting Projects

• Production Projects

• Extrapolations

2

IDAS MDM

Product-

master

Shop-

master

IOP

Status

Info Pool

Loading tracking

data into

LoadingTable

6a

Loading

Table

IDAS

Output

Pool (IOP)

DWH Admin Take-over of

• ProductGroups (incl. Features) and

• Channels (incl. Features) from the

MDM into DWH

1

Fig. 5 Overview of Preprocessing

Data Refinement in a Market Research Applications’ Data Production Process 307

In the following, the central components of this process—the extrapolation defini-
tion, the DWH FactTool and the quality control in the DWH QC—will be described in
more detail.

5.2 Extrapolation Definition in the DWH Builder

A first step of the analysis process is the definition of a market model. It has to be de-
fined which outlets in the market shall be included in the survey and with which extrap-
olation factors they shall be used to also represent the outlets that are not included in the
sample. To do so, a disproportional sampling procedure [4], that assigns individual out-
lets to homogeneous classes under consideration of channel affiliation and profit impor-
tance, is used to define a system of extrapolation cells, in which the extrapolation fac-
tors of the outlets are either equally distributed to the cell outlets or individually speci-
fied for each cell outlet (see Fig. 6).

According to the extrapolation model, the transaction data of the cell outlets will
then be periodically requested from the data acquisition system IDAS and forwarded to
further processing steps.

5.3 Compensation of Delivery Outages in the DWH FactTool

The DWH FactTool is part of the interface between IDAS and the Data Warehouse. As
a part of the preprocessing, the DWH FactTool can be used to extrapolate retailer data

Fig. 6 Definition of Extrapolation Cells

308 Thomas Ruf and Thomas Kirsche

in such a way that they can be loaded as basis for further extrapolations to DWH base
projects. The main task of the DWH FactTool is to balance insufficiencies in the data
deliveries of the industry in order to have a continuous, market-related time series of
transaction data, from which knowledge on market constellations and market develop-
ments can be derived. Typical tasks taking place in the DWH FactTool are:
– outlets with missing data are compensated with data from the preceding period of the

same outlet
– outlets with missing data are filled with data from similar outlets of the current period
– outlets with incomplete data are weighted.
Similar characteristics apply to product groups within one outlet and to delivery periods
within product groups of an outlet. It becomes clear that a hierarchical descent on the
analysis and compensation level is possible (correction of complete outlet / product
group within an outlet / delivery period within a product group of an outlet) to allow for
a reaction to delivery outages that is ideally compact and efficient (complete outlet) but,
if necessary, can also be of very fine granularity (single delivery period within a product
group of an outlet).

The central surface of the DWH FactTool enables a quick overview on the status of
the transaction data that have been requested by IDAS in a DataOrder. The top level
shows the individual outlets in their groupings specified in the extrapolation definition
(see Fig. 7).

The colorings used in the display of the DWH FactTool give a quick overview on
the quality of the transaction data being available in IDAS for the selected DataOrder.
Green outlets fully meet the requirements, yellow outlets have provided data but only
in insufficient quality, and red outlets are marked as a delivery outage in one or more
delivery periods. For yellow and red outlets, the DWH FactTool can be used to create
a rule for how to handle the insufficient or missing data in the subsequent production

Fig. 7 Main View in the DWH FactTool

Data Refinement in a Market Research Applications’ Data Production Process 309

process (e.g., replacement of a missing data delivery with the data from the previous pe-
riod of the same outlet or with a similar outlet in the current period). The decision on
which kind of compensation is most suitable for a specific delivery problem is at the
discretion of experienced market researchers and cannot be automated according to cur-
rent assessment.

5.4 Quality Control in the DWH QC

Even though compensations of delivery outages can already be applied in the DWH
FactTool, it is still necessary in many cases to let the data, either supplied from the field
or created by compensations, undergo a detailed check and, if necessary, a correction,
because the consistency of the data quality of the business panel can otherwise not be
guaranteed for such a high number of external data sources. Here, too, the system can
only provide checking routines and, if needed, correction suggestions; the final decision
on whether or not—and if applicable, in what way—the delivered transaction data will
be manipulated, can again only be made by market experts with comprehensive, long-
time knowledge of the market.

The quality control of the transaction data in the DWH QC (Quality Control) takes
place within the context of the reporting system of GfK Marketing Services, the DWH
Explorer. The advantage of this is that the full functionality and flexibility of the report-
ing system can be used for the creation of checking reports. In section 6, this will be
explained further. In the following, the specific checking and correction options of the
DWH QC will be discussed in more detail.

The DWH QC comprises the following specific quality check and control options:
– price check and correction
– check for runaways and additional set checks (based on constant mass, too) and cor-

rections
– check of alteration rates
– modification of sales, purchases, and stocks
– weightings based on items or aggregates (per factor and per target value input)
– deletion and creation of items (e.g., for influencing the distribution)
– copying and moving transaction data.

5.4.1 Price Check and Correction
In the price-check section of the QC in the DWH Explorer, the parameters for the price
check are set, the price check is started, and the results of the automatic price check and
price correction are visualized to the user to either approve or edit the suggestions pro-
vided by the system. The price check consists of three steps:
– detection of a reference price per item and channel
– checking the prices against the reference price
– price correction, if necessary.

310 Thomas Ruf and Thomas Kirsche

The detection of the reference price takes place according to certain parameters to be
defined by the user, e.g., the minimal number of prices found. The reference price de-
tection is based on the current period and includes previous periods for reference price
definition only if the entries found in the current period are not sufficient. If the previous
periods are not sufficient either, an external price (master data reference price) will be
included. If necessary, a sub-product group price will be created to be used as basis for
checking, too; the sub-product groups would have to be defined by the user.

The price check is oriented at certain ranges upwards and downwards around the
reference price to find out whether or not a price can be accepted. Additionally, it has
to be defined if the reference price itself, the lower or upper bound, or the lowest or
highest price found within the defined ranges around the reference price shall be used
for a price replacement.

The result of the automated price checking routine is a correction catalogue, in
which the user is provided with the prices heavily diverging from the detected reference
price, along with suggestions for their correction. The user can accept the correction
suggestions, enter a manual correction price, or leave the delivered price unchanged.

5.4.2 Further Fact Corrections
With the help of the DWH QC, a user can define correction factors or target values for
individual transaction data arrays on an aggregated basis. The necessity of a correction
is decided upon by the user based on checking reports, in which, for example, the diver-
gence (in percentage) of the market volumes of certain brands in individual market seg-
ments can be represented.

When executing fact corrections, it has to be ensured in the system that the inner
consistency of the data material is not violated. An example for this is the relation be-
tween initial and final stocks as well as between purchases and sales:

final stock = initial stock + purchases - sales,

with the additional requirement that the initial stock of the current period has to be equal
to the final stock of the preceding period. For example, if the sales quantity is increased,
an adjustment over the stock or sales has to be made to obey the formula above. For this
purpose, the system offers various settings (see Fig. 8).

With the options of the DWH QC, an experienced market researcher can execute
manipulations of the transaction data to eliminate obvious quality problems in the de-
livered transaction data. If the market suitability of the data can be ensured in this way,
they can subsequently be released as a new reporting period into the DWH Reporting.

6 Data Refinement in the Reporting System

In this section, the Data Warehouse Explorer will be introduced as the central reporting
instrument of GfK Marketing Services. For that, the analytical options of the system
will be presented from an application perspective.

Data Refinement in a Market Research Applications’ Data Production Process 311

The Data Warehouse systems commonly used nowadays are marked by some seri-
ous limitations with regard to their use for panel data analyses. For example, in basically
all systems, it is taken for granted that classification hierarchies have a global validity
in the respective dimension [2]. For the application field of panel data research, this
would mean that the technical product features, which shall be used especially for fine
market segmentations, would have to be modeled globally.

In more specific terms, this would mean that, for example, the classification feature
“rotation speed” would have to be reserved for color TV sets the same way as for wash-
ing machines. Of course, that is absurd. The other way round, the question about the
screen size of a washing machine could hardly be answered either. This creates the need
for a modeling that allows for the declaration of product features depending on the cur-
rent analysis status in a context-oriented way. The important thing, here, is that in those
cases in which a feature is actually spanning several product groups—for example, the
brand—a systematic representation of the circumstances takes place.

Another problem with the Data Warehouse systems currently in use is the “all-or-
nothing” semantics for drill operations. Many systems support drill operations of vari-
ous kinds: drill-down, drill-up, drill-across, etc. [7]. However, they provide the refine-
ment only for either one initial element of a reporting level or for all elements together.
In the product world of GfK, this way of proceeding would either lead to a flood of un-
connected partial reports or to unnecessarily extensive global reports.

A better solution would be a system which can be used, for example, to segment TV
sets with low screen diagonals further depending on whether they are sold with or with-
out remote control, while this criterion would not be selective for big TV sets, for
which, for example, the differentiation should be based on more meaningful features,
such as 100-Hertz technology or 16:9 picture format. By doing so, specific knowledge
can be gathered from the abundance of available data.

The limitations mentioned above as well as further ones in current Data Warehouse
systems, such as the insufficient semantics of the calculation of Totals and Others, led
to the GfK Marketing Services' development of their own Data Warehouse system [8].
Apart from the solution of the problems described, this system is marked by a very in-
tuitive user interaction similar to Windows. In this system, the user specifies the desired

Fig. 8 Fact Manipulation Form in the DWH QC

312 Thomas Ruf and Thomas Kirsche

Fig. 9 Definition and Execution Views in the DWH Explorer

a) Definition View in the DWH Explorer

b) Execution View in the DWH Explorer

Data Refinement in a Market Research Applications’ Data Production Process 313

report structure by drag&drop operations. While this happens, the system immediately
displays every step in the resulting report structure and updates the context for subse-
quent specification steps (What You See Is What You Get). This means, the system pro-
vides the user with further meaningful analysis options at all times—and only with these
[6]. In Fig. 9a, the user interface of the DWH Explorer is shown the way it would look
like for a typical market research report during the interactive report specification.
Fig. 9b shows the respective market research report in the result view.

On an analytical level, the comprehensive application-specific metrics libraries, for
example, those for numerical and weighted distribution parameters, and a context-sen-
sitive hitlist generation have to be emphasized in connection with the Data Warehouse
system of GfK Marketing Services. The latter allows to generate item-level, ranked hit-
lists according to the filter parameters of any data cell—selectable via mouse click—of
an initial report, and to continue processing the items or brands constituting the initial
cell as an independent report. For example, if a strong growth of the market share for
100-Hertz color TV sets with 16:9 format is detected in a period comparison, this func-
tion can be used to execute an immediate detail analysis to find out which individual
models or brands have especially contributed to this development. In a subsequent anal-
ysis step, it can be examined, for example, whether the strongest brand found shows a
similar growth in adjacent product groups and whether, thus, rather a commonly higher
brand value appraisal instead of a preference for this specific TV-set segment can be
detected.

7 Summary and Outlook

In the paper at hand, the data production process in a market research company was
used to explain process-oriented, “engineer-like” Knowledge Discovery for empirically
gathered mass data. This perspective on the term Knowledge Discovery is certainly not
consistent with the one to be found in the scientific literature [5]; however, it shares sev-
eral central similarities with it. In both cases, the important aspect, after all, is to gener-
ate knowledge at the schema level from data constellations at the object level. Whether
this discovered knowledge will then become manifest in a database schema or in the
practical knowledge of an experienced employee is only secondary from this perspec-
tive. The “classic” Knowledge Discovery, too, is eventually dependent on plausibility
and relevance checks of the discovered knowledge by human users. Right from the start,
the suggested process-oriented extension of the term incorporates this human decision-
making process into the total approach and, thus, reduces the role of the computer to an
identification and suggestion system. Overall, this role distribution in practice leads to
a robust knowledge base, that is continuously improving, and that could turn out to be
the decisive competitive advantage when facing other participants in the market who
“only” use machine-supported approaches.

314 Thomas Ruf and Thomas Kirsche

References

[1] Albrecht, J., Lehner, W., Teschke, M., Kirsche, T.: Building a Real Data Warehouse for
Market Research. In: Hameurlain, A., Tjoa, A. M.(Eds.): Proceedings 8th International
Conference on Database and Expert Systems Applications (DEXA '97, Toulouse, France,
September 1-5, 1997), Lecture Notes in Computer Science 1308, Springer, 1997, p. 651-
656

[2] Bauer, A., Günzel, H.(Hrsg.): Data Warehouse Systeme. 2nd edition, dpunkt.verlag, 2004
[3] Bussler, C.: Workflow Instance Scheduling with Project Management Tools. In: Quirch-

mayr, G., Schweighofer, E., Bench-Capon, T. J. M. (Eds.): Proceedings 9th International
Conference on Database and Expert Systems Applications (DEXA '98, Vienna, Austria,
August 24-28, 1998), Lecture Notes in Computer Science 1460, Springer, 1998, p. 753-
758

[4] Cochran, W.G.: Sampling Techniques, New York et al.: John Wiley & Sons 1977
[5] Ester, M., Sander, J.: Knowledge Discovery in Databases. Springer, 2000
[6] Görlich, J., Reinfels, I., Ruf, T.: Dealing with complex reports in OLAP applications. In:

Mohania, M. K., Tjoa, A. M. (Eds.): Proceedings First International Conference on Data
Warehousing and Knowledge Discovery (DAWAK'99, Florence, Italy, Aug. 30-Sep. 01,
1999), Lecture Notes in Computer Science 1676, Springer, 1999, p. 41-54

[7] Kimball, R.: The Data Warehouse Toolkit. New York et al.: John Wiley & Sons, 1996
[8] Ruf, T.: Das GfK Marketing Services Data Warehouse: Operational Decision Support für

die Paneldatenanalyse. In: Proceedings 22. Europäische Congressmesse für technische
Kommunikation (ONLINE '99, Düsseldorf, Germany, Feb. 1.-4, 1999), p. C834.01-
C834.06

[9] Schanzenberger, A. ; Lawrence, D.R.: Automated Supervision of Data Production - Man-
aging the Creation of Statistical Reports on Periodic Data. In: Meersman, R., Tari, Z.
(Eds.): On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE;
Proceedings OTM Confederated International Conferences CoopIS, DOA, and ODBASE
(CoopIS 2004, Larnaca, Cyprus, Oct. 25-29, 2004), Lecture Notes in Computer Science
3290, Springer, 2004., p. 194-208

[10] Schanzenberger, A., Tully, C., Lawrence, D.R.: Überwachung von Aggregationszuständen
in verteilten komponentenbasierten Datenproduktionssystemen. In: Weikum, G., Schön-
ing, H., Rahm, E. (Eds.): Proceedings 10th BTW-Konferenz Datenbanksysteme für Busi-
ness, Web und Technologie (BTW 2003, Leipzig, Germany, Feb. 26-28, 2003), Lecture
Notes in Informatics P-26, Bonner Köllen Verlag, 2003, p. 544 -558

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 315-334, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Information Management in

Distributed Healthcare Networks

Richard Lenz

University of Marburg
lenzr@mailer.uni-marburg.de

Abstract. Providing healthcare increasingly changes from isolated treatment
episodes towards a continuous treatment process involving multiple health-
care professionals and various institutions. Information management plays a
crucial role in this interdisciplinary process. By using information technolo-
gy (IT) different goals are in the focus: To decrease overall costs for health-
care, to improve healthcare quality, and to consolidate patient-related infor-
mation from different sources.
 Consolidation of patient data is ultimately aimed at a lifetime patient record
which serves as the basis for healthcare processes involving multiple health-
care professionals and different institutions. To enable seamless integration
of various kinds of IT applications into a healthcare network, a commonly ac-
cepted framework is needed. Powerful standards and middleware technology
are already at hand to develop a technical and syntactical infrastructure for
such a framework. Yet, semantic heterogeneity is a limiting factor for system
interoperability. Existing standards do support semantic interoperability of
healthcare IT systems to some degree, but standards alone are not sufficient
to support an evidence-based cooperative patient treatment process across or-
ganizational borders.
 Medicine is a rapidly evolving scientific domain, and medical experts are de-
veloping and consenting new guidelines as new evidence occurs. Unfortu-
nately, there is a gap between guideline development and guideline usage at
the point of care. Medical treatment today is still characterized by a large di-
versity of different opinions and treatment plans. Medical pathways and re-
minder systems are an attempt to reduce the diversity in medical treatment
and to bring evidence to the point of care. Developing such pathways, how-
ever, is primarily a process of achieving consensus between the participating
healthcare professionals. IT support for pathways thus requires a responsive
IT infrastructure enabling a demand-driven system evolution.
 This article describes modern approaches for “integrated care” as well as the
major challenges that are yet to be solved to adequately support distributed
healthcare networks with IT services.

316 Richard Lenz

1 Introduction

Healthcare heavily depends on both information and knowledge. Thus, information
management plays an important role in the patient treatment process. Numerous studies
have demonstrated positive effects of the use of IT in healthcare. In particular, the pre-
ventability of adverse events in medicine has been in the focus of recent studies. Ad-
verse events are defined as unintended injuries caused by medical management rather
than the disease process [62]. It turned out that insufficient communication and missing
information are among the major factors contributing to adverse events in medicine (cf.
[9, 12, 13, 32, 64, 65]). IT has the potential to reduce the rate of adverse events by se-
lectively providing accurate and timely information at the point of care (cf. [39]). Yet,
there is a discrepancy between the potential and the actual usage of IT in healthcare. A
recent IOM report even states that there is an “absence of real progress towards apply-
ing advances in information technology to improve administrative and clinical process-
es” [15]. To understand this discrepancy, both the potential of IT and the challenges to
be solved should be seen.

 One major challenge is certainly the increasingly distributed nature of the health-
care process. Healthcare changes from isolated treatment episodes towards a continu-
ous treatment process involving multiple healthcare professionals and various institu-
tions. This change imposes new demanding requirements for IT support. System inte-
gration and inter-institutional support of healthcare processes are needed [8]. Advanced
concepts for data security must provide a solid basis for IT services.

 IT support starts with electronic transmission of prescriptions, discharge letters and
reports. Gathering such information is ultimately aimed at a lifetime patient record or
“Electronic Health Record” (EHR), which is independent from specific healthcare fa-
cilities. The vision of a cooperative patient treatment process based on such a unified
EHR involves the seamless integration of medical guidelines, pathways, telemedicine
applications, and medical trials. The patient is expected to receive more and more re-
sponsibility and competence as she is provided with information from her patient
record, and as she governs the use of her own healthcare data (patient empowerment).

 One of the most frequently cited works in the context of healthcare telematics per-
spectives in Germany is a study by Roland Berger from 1997 [7]. It illustrates the vision
of integrated care by exemplarily describing a hypothetical patient encounter:
“... The patient is called into the physicians consulting room. In agreement with the pa-
tient the physician views her EHR at his terminal. The EHR contains all previously col-
lected reports from other physicians and other institutions. An automatic summary and
evaluation of previous results is provided. Current literature on the patient’s problem
and available guidelines are offered and can be accessed online. In addition, new med-
ications and available services related to the patient’s case are selectively provided. The
physicians system has been individually configured to ensure that he is only provided
with relevant information he really wants to see. Based on the information contained in
the EHR, the physician receives hints for suitable anamnesis questions. In any case, the
physician can obtain additional information concerning differential diagnoses. By inte-
grating different sources of information and knowledge from a world-wide healthcare

Information Management in Distributed Healthcare Networks 317

network the EHR provides more information than originally collected. This information
is provided in the form and language preferred by the individual physician. ...”

 In this vision, the EHR not only plays the central role as the source of information,
it is also the basis for providing medical knowledge in the current context of the treat-
ment process. However, the vision leaves open where information and knowledge come
from and how they are linked together in a meaningful way. Stead et al. state that the
computerized patient record (CPR), which can be seen as a predecessor of the EHR,
should be a byproduct of care processes rather than a direct task. Consequently, the use
of IT applications should be an integral part of the patient treatment process. IT appli-
cations should guide data acquisition in a way that data are placed in a meaningful con-
text from the beginning, so that they are ready for reuse in different contexts without the
need to manually index or transform the data. Reuse of data comes in different forms:

1. Direct access by healthcare professionals to data stored in the EHR
2. Aggregation of data from the EHR for different kinds of analytical purposes
3. Automated interpretation of data stored in the EHR by IT applications to provide

different kinds of functionality for decision support.
In order to support these requirements within the context of a distributed healthcare
process, far reaching standards for systems integration are needed. Moreover, as medi-
cine is a rapidly evolving domain, concepts for system evolution are needed. In this pa-
per, requirements for system integration and current solution approaches are described
and open questions and challenges are identified.

 The remainder of this chapter is organized as follows. In the next section, general
integration requirements are summarized and available standards and integration initi-
atives in healthcare are categorized accordingly. Effective decision support in a distrib-
uted healthcare process requires more than standardized ontologies and terminologies.
So, the following section describes approaches for decision support in healthcare. Fi-
nally, current efforts for building up infrastructures for healthcare are described.

2 Integrating Health Information Systems

Integrating autonomous software components is a difficult task, as individual applica-
tions usually are not designed to cooperate. In particular, applications are often based
on differing conceptualizations of the application domain, which are not necessarily
compatible. Today powerful integration tools (e.g., different kinds of message-oriented
middleware [1]) are available to overcome technical and syntactical heterogeneity of
autonomous system components. Yet, semantic heterogeneity remains as a major bar-
rier to seamless integration of autonomously developed software components. Semantic
heterogeneity occurs when there is a disagreement about the meaning, interpretation, or
intended use of the same or related data [54]. It occurs in different contexts, like data-
base schema integration, ontology mapping, or integration of different terminologies.

318 Richard Lenz

The underlying problems are more or less the same, though they are often complex and
still poorly understood.

 Stonebraker characterizes disparate systems as “islands of information” and points
out two major factors which aggravate systems integration [57]:

1. Each island (i.e., application) will have its own meaning of enterprise objects.
2. Each island will have data that overlaps data in other islands. This partial redun-

dancy generates a serious data integrity problem.
Based on this statement, data integration can be reduced to a mapping problem (how to
map different conceptualizations in a semantically correct way) and a synchronization
problem (how to ensure mutual consistency of redundant data which are stored in dif-
ferent databases under the control of autonomous applications). The mapping problem
is essentially related to the schema integration problem of database systems, which has
been extensively discussed in the database literature in recent years (e.g., [11, 16, 19,
48]). A frequently cited classification of problems related to semantic data integration
is an article from Kim and Seo [31]. They distinguish between data conflicts and sche-
ma conflicts, which corresponds to a distinction between type level and instance level
conflicts. Schema conflicts are further divided into naming conflicts, structural conflicts
and integrity conflicts. Data conflicts may arise due to differing data representations,
missing or contradicting database contents. Approaches for data integration are classi-
fied in [48] and in [4]. A major perception in data integration research has been that
schema integration cannot be automated in general. In [4] it is stated: „The general
problem of schema integration is undecidable“. Heiler explicitly refers to the problem
of semantic integration: „Understanding data and software can never be fully automat-
ed“ [27]. As a consequence, the process of schema integration always needs a human
integrator for semantic decisions. Colomb even goes a step further by stating that there
are cases where no consistent interpretation of heterogeneous sources is possible (“fun-
damental semantic heterogeneity”). Resolving fundamental semantic heterogeneity
necessarily results in compromising design autonomy. Typically, systems have to be
modified to resolve fundamental semantic heterogeneity.

2.1 Aspects of Integration

So far, integration of disparate systems has only been viewed under a data integration
perspective. The reason for this is that data integration is considered to be the most im-
portant precondition for further integration. Data integration is the backbone and start-
ing point of each successful integration project, because any process control always re-
quires a meaningful exchange of data, too [2]. Yet, distinguishing further integration as-
pects is helpful to categorize different integration approaches and standards in
healthcare [36]:

• Data integration: The goal of data integration is to create a unique semantic refer-
ence for commonly used data and to ensure data consistency. To create such a se-
mantic reference different facets of data semantics have to be considered. In this ar-
ticle, three facets are roughly distinguished:

Information Management in Distributed Healthcare Networks 319

1. The instance level, referring to the semantics of individual data objects, which
corresponds to the meaning of entries in a database.

2. The type level, designating the semantic classification of data objects, which
roughly corresponds to the database schema.

3. The context, which refers to the semantic relationships that associate an object
with other objects.

 To illustrate the difference of these aspects we may consider a concept “diagnosis”
at the type level, and a particular instance, say “Encephalitis”, and the context of this
instance which is determined by the patient, the physician who made the diagnosis, and
other objects that contribute to a particular statement (information).

 The most important means to ease data integration are common standardized do-
main-specific ontologies and terminologies, which serve as a semantic reference for
system programmers and users (cf. [35]). Today, such standards can be built on the ba-
sis of well accepted syntactical frameworks such as XML and RDF, which can be used
to refer to common name spaces with defined semantics. Even existing standards in
healthcare are already being transformed into these formats to improve syntactical com-
patibility with commonly accepted data processing formats.

• Functional integration refers to the meaningful cooperation of functions of different
software components. Uncontrolled data redundancy is often the result of an insuffi-
cient functional integration of disparate systems. Autonomously developed systems
often overlap in their functionality, partly providing the same or only slightly differ-
ing functionality. This aggravates integration even if the systems are already based
on common ontologies. To avoid these difficulties, common frameworks are re-
quired which serve as a reference for programmers to create compatible software
components. Examples for such domain specific application frameworks are given
in [20]. Requirements for an application framework directed towards open systems
in the healthcare domain are described in [33]. In general, such a framework must
provide clear specifications of interfaces and interaction protocols which are needed
for embedding a software component into a system of cooperating components.
So far, the term “functional integration” has been used to depict a property of a dis-
tributed system comprising multiple interacting components. It should be mentioned,
though, that the terms “data integration” and “functional integration” are also often
used to designate complementary ways of integrating pre-existing heterogeneous
systems. Thereby, functional integration concentrates on application logic rather
than data management. This approach typically causes a much higher integration ef-
fort, because semantic mapping of data is only done indirectly by using data appro-
priately to parameterize function calls [57]. In many cases, data can only be accessed
via predefined functions provided by a more or less closed application system. A di-
rect database access is often prohibited to preserve data consistency, because integ-
rity constraints are not controlled at the database level but within the applications
[26]. In these cases, functional integration is the only way to integrate heterogeneous
application systems.

• Desktop Integration or presentation integration refers to the user interface of a dis-
tributed system. Desktop integration is aimed at user transparency, meaning that the

320 Richard Lenz

user would not know what application was being used or what database was being
queried [46]. This requires more than a unified layout and uniform interaction mech-
anisms. Examples for functions needed to achieve desktop integration are “single
sign on” and “desktop synchronization”. Desktop synchronization is needed when a
user has multiple windows to different applications on his or her desktop that share
a common context. Synchronization is required when the context is changed in one
of the interlinked applications. As an example, a clinical user might have several
windows on the desktop that show data of the same patient stemming from different
applications; changing the current patient in one application must be synchronized
with the other applications. The architecture of a distributed system must adhere to
certain requirements, such as a central context manager, in order to enable desktop
synchronization. Moreover, the applications to be synchronized must agree on the
semantics of context data and on a common coordination protocol for context syn-
chronization.

• Process integration. Each of the previously introduced integration aspects refers to
a different layer of distributed systems: data management, application logic, and pre-
sentation. Process integration is complementary to these purely system-related as-
pects, as it refers to the alignment of IT and business process needs. Thus, process
integration can be viewed as the superior integration goal (cf. [37, 58]). Process in-
tegration has to be viewed as an integration aspect of its own right, because informa-
tion systems are socio-technical systems comprising human actors as the major con-
tributors to information processing. A technically perfectly integrated system might
be useless within a concrete organization if it does not fulfil the user’s requirements.
 Data integration, functional integration, and desktop integration can be summa-

rized under the term “application integration”. Adherence to standards is of critical im-
portance to ease application integration. In the next section, approaches to application
integration in healthcare are categorized according to their contribution to the different
system integration aspects.

2.2 Standards for Semantic Integration in Healthcare

The architecture of typical hospital information systems is characterized by many dif-
ferent departmental systems, which are usually optimized for the support of different
medical disciplines (e.g., radiology, cardiology, or pathology). The need to consolidate
the data produced by these ancillary systems to a global patient-centred view and to sup-
port the cross-departmental processes has motivated the development of standards for
data interchange in healthcare. These standards also play an important role when not
only cross-departmental but also cross-organizational healthcare processes are to be
supported. The most important standards used in commercial healthcare software are
briefly characterized subsequently.

• HL7
HL7 is the leading standard for systems integration in healthcare. The name “Health
Level 7” refers to the application layer in the OSI reference model [59]. HL7 is a

Information Management in Distributed Healthcare Networks 321

message-based standard for the exchange of data among hospital computer applica-
tions. The standard defines which data items are to be interchanged when certain
clinical trigger events occur (admission, discharge, or transfer of a patient are exam-
ples for such events). Since version 2.3 (1997), the standard covers trigger events for
patient administration, patient accounting, order entry, medical information manage-
ment, clinical observation data, patient and resource scheduling, and others. The
standard is continuously extended and newly arising topics, such as the integration
of genomic data in Electronic Health Records, are handled in special interest groups
(SIGs).
Today’s commercially available healthcare software usually implements a relatively
small portion of HL7 only, covering those communication patterns that are typically
requested as essential basis for interconnecting disparate applications. As HL7 does
not comprise an architectural framework for health information systems, it does not
tackle questions of functional integration of different software components within a
healthcare network. The core of the standard is concerned with data semantics, pri-
marily at the type level. Yet, to a limited degree HL7 also contains tables that define
the allowable values for certain data elements. In addition, HL7 supports the use of
external coding schemes such as LOINC or SNOMED within HL7 messages. The
HL7 Vocabulary Technical Committee (TC) was organized to select and maintain
the vocabulary used in HL7 messages. The goal is to make implementations of the
version 3 HL7 standard more plug-and-play compatible. To make the vocabulary
readily accessible to the public, HL7 is collaborating with the U.S. National Library
of Medicine (NLM) to include HL7 vocabulary in the Unified Medical Language
System (UMLS) Metathesaurus [28].
With version 3.0 the standard has moved to an object-oriented basis. Core of version
3.0 is the HL7 Reference Information Model (RIM), which is intended to serve as a
reference for consistent generation of new HL7 messages. Though it was originally
intended as a comprehensive data model, it is primarily used as a generic schema
which allows classifying medical concepts into generally applicable categories.
The Clinical Document Architecture (CDA) is an emerging standard on the basis of
HL7 and the RIM intended for interchange of medical contents. CDA is an XML-
based standard for clinical documents. A clinical document is the unit of data trans-
mission which also serves as a unit of authentication. The standard contains three dif-
ferent levels of abstraction. Level one comprises annotation of the general context in
which a document was created as well as generic type level annotations for document
contents. The levels two and three are intended to add more detailed annotations.
The „Clinical Context Object Working group“ of the HL7 group gave the name for
the standard CCOW, a standard for desktop integration in the healthcare domain
[53]. On the basis of HL7, the standard specifies context data that are to be synchro-
nized as well as synchronization protocols.

• DICOM
DICOM („Digital Imaging and Communications in Medicine“) [10] is a well estab-
lished standard for communicating medical image data. It is structured as a nine part
document to accomodate evolution of the standard. DICOM supports data integra-
tion on a type level, as it comprises an object-oriented data model. To some degree

322 Richard Lenz

it also contributes to functional integration, as it introduces service classes to specify
well defined operations across the network. Recently DICOM has significantly ex-
tended its scope towards clinical contents by introducing DICOM SR (structured re-
porting).

• IHE
Despite well accepted standards for data integration like HL7 and DICOM, health-
care applications are still far from plug-and-play compatibility. One reason for this
is that the existing standards do not address functional integration issues sufficiently.
The IHE initiative (“Integrating the Healthcare Enterprise”) [61] does not develop
new standards for data interchange but specifies integration profiles on the basis of
HL7 and DICOM. Thereby, actors and transactions are defined independently from
any specific software product. An integration profile specifies how different actors
interact via IHE transactions in order to perform a special task. These integration pro-
files serve as a semantic reference for application programmers, so that they can built
software products that can be functionally integrated into an IHE-conformant appli-
cation framework.
 The standards and integration approaches mentioned so far are primarily focused

on standard ontologies for type level data integration. Few approaches are aimed at
functional integration. Among these is the IHE initiative, which is still primarily fo-
cused on image communication involvig software components like RIS (Radiology In-
formation System) and PACS (Picture Archiving and Communication System) as well
as medical imaging devices. To achieve data compatibility at the data instance level,
additional standards for coding are required:

• ICD / ICPM
The International Classification of Diseases (ICD) and the International Classifica-
tion of Procedures in Medicine (ICPM) are well accepted standards which are mostly
used for accounting purposes. For medical decision making, however, a significantly
more detailed documentation is required.

• LOINC
Logical Observation Identifiers Names and Codes (LOINC) is a standard for coding
of laboratory observations developed in 1994 and continuously extended since then.

• MeSH
The Medical Subject Headings (MeSH) are the thesaurus which is used to index the
Medline databases. The MeSH also comprises a dictionary with definitions of MeSH
terms, and it is continuously updated with new terms.

• SNOMED CT
The Systematized Nomenclature in Medicine (SNOMED) is a multiaxial classifica-
tion system for medical concepts. The number of SNOMED dimensions has signif-
icantly increased over time. While in [66] 7 dimensions were distinguished, the cur-
rent version of SNOMED CT (Clinical Terms) already comprises 18 hierarchically
organized dimensions. By combining terms of different dimensions, a large number
of medical concepts can be described in a standardized way.

Information Management in Distributed Healthcare Networks 323

• UMLS
The Unified Medical Language System (UMLS) is a metathesaurus for healthcare
terminologies, covering multiple relationships between various source vocabularies,
such as ICD, LOINC, and SNOMED CT. Today the UMLS covers more than 100
source vocabularies in more than 15 languages.

• GALEN
The GALEN project is aimed at a language independent coding system based on a
compositional and generative formal approach for modeling concepts [49, 50]. GA-
LEN tries to avoid the combinatorial explosion of terms in enumerative systems
(such as ICD or LOINC) as well as the generation of nonsensical terms in partially
compositional systems (such as SNOMED CT).

The list of standards mentioned here is far from complete, but it contains the most im-
portant standards which are used in today’s healthcare software. The contribution of ex-
isting standards to systems integration is roughly indicated in Tab. 1.

Tab. 1 Contribution of Healthcare Standards to Semantic Integration

Tab. 1 shows that there are numerous standards for medical terminology. Yet, despite
of many attempts, a unique and comprehensive ontology of the medical domain is not
within sight. The various examples also show that medical terminologies continuously
evolve over time, and that there is no stable reference for system programmers. Thus,
semantic integration of heterogeneous systems in healthcare will have to deal with vol-
atile medical concepts.

 Data integration Functional
integration

 Presentation
 integration Instance level Type level Context

Standards and approaches for systems integration

 HL7 HL7 vocabulary
(limited domain

coverage)

 RIM: Generic data model
 CDA: Framework for clinical

contents

 - CCOW:
 Desktop

synchroniz.
 DICOM - DICOM object model DICOM Services -

 IHE - - - Integration profiles
 (limited domain

coverage)

 -

Terminology, classification

 ICD/ICPM Diagnoses and
procedures

 - - - -

 LOINC Laboratory results - - - -

 MeSH Terms used for indexing medical
literature

 - - -

 UMLS Metathesaurus for medical
terminologies / semantic network

 - - -

 SNOMED Multiaxial nomenclature for
medical concepts

 - - -

 GALEN Terminology for medical concepts
based on a formal reference model

for knowledge representation

 - - -

324 Richard Lenz

 In order to be able to build integrated systems capable of adapting to new require-
ments that arise from an evolving application domain, it is necessary to start with frame-
works that are usable as a stable basis for further system evolution. Thereby, different
levels of integration can be distinguished.

2.3 Incrementally Improving Integration

The first step and the most basic requirement for establishing an electronic health record
is a unique patient identification. Today, this is still one of the major obstacles to auto-
matically consolidating patient-related information from different sources. A less opti-
mistic prognosis from Haux et al. contains the hypothesis that the Health Record will
still not be reality by the year 2013 and that more than 90 % of all patient-related data
will still be stored in institution-specific databases or regional healthcare networks with
proprietary patient identification systems [24].

 Healthcare organizations typically use a computer-based Master Patient Index
(MPI) to store patient identification information, e.g., basic demographic data collected
during the patient registration process. Once the patient is successfully identified, he or
she is associated to a unique patient identifier. In a distributed scenario with multiple
feeder systems, an MPI is an essential central service that maps such patient identifiers
from different systems. With the help of an MPI arbitrary patient-related files can be
linked together under a common patient identification. This, however, is not sufficient
to build an electronic health record that is capable of supporting the healthcare process
in a seamless way. Reuse of data in computer applications requires semantic compati-
bility of document contents. Thus, further steps are required to achieve comparable con-
tents.

An approach for incrementally improving semantic compatibility of patient data
can be supported by multi-layered ontologies such as the leveled approach of the CDA,
formerly known as PRA (Patient Record Architecture). The scope of the CDA is the
standardization of clinical documents for exchange. The XML-based leveled approach
supports incremental improvement of semantic compatibility in several ways: Level
one already contains sufficient information to consolidate documents under a common
context. Thus, a basic health record can be established before detailed annotation is
available. CDA documents are human readable, and can be displayed with appropriate
XSLT stylesheets regardless of the degree of semantic annotation. As the detail of
standardized semantic annotations increases, new applications can make use of the con-
tents of CDA documents, e.g., for decision support purposes.

 To understand how an electronic health record can support the patient treatment
process, it is necessary to take a closer look at medical practice and the structure of med-
ical records.

Information Management in Distributed Healthcare Networks 325

3 Embedding Decision Support into the Healthcare Process

The healthcare process is often called a diagnostic-therapeutic cycle comprising obser-
vation, reasoning, and action. Each pass of this cycle is aimed at decreasing the uncer-
tainty about the patient's disease or the actual state of the disease process [60]. Thus, the
observation stage always starts with the patient history (if it is available) and proceeds
with diagnostic procedures which are selected based on available information. It is the
job of an EHR to assist healthcare personnel in making informed decisions. Conse-
quently, the system should present relevant information at the time of data acquisition
and at the time of order entry. Thereby, an important question to be answered is how to
determine what is relevant.

3.1 The EHR as a Tool for Decision Support

A patient record is commonly defined as the repository of information about a single
patient, generated by healthcare professionals as a direct result of interaction with a pa-
tient [18]. To provide a coherent picture of a patient’s current situation and to avoid un-
necessary examinations, it is important to provide a comprehensive overview of avail-
able information. However, it is useless to only offer large collections of documents and
files that contain detailed information but no summary of the most relevant issues.
Therefore, it is of paramount importance to appropriately organize an electronic patient
record for easy access by a physician. An appropriate organization of the health record
should be adapted to the way clinicians use the record, i.e., the functions the record has
to fulfill efficiently. Basically, these functions are data collection, problem definition,
systematic planning, and follow-up documentation as a basis for continuity of care.

This model of clinical thinking dates back to 1956, when Lawrence Weed began de-
veloping the problem-oriented medical record (POMR) [63] based on problem lists
containing a patient’s active and inactive problems. The fundamental principle of the
POMR is the idea of problem-related progress notes that summarize the current status
of a problem’s treatment according to the so-called “SOAP”-principle: Subjective (the
patient’s own observations as reported in the anamnesis), Objective (the physician’s ob-
servations and results of diagnostic treatment), Assessment (the physician’s under-
standing of the problem), and Plan (goals, actions, advice, etc.). The POMR and SOAP
progress notes are well accepted in the scientific community. Yet, many commercially
available systems still fail to follow its simple rules. Instead, electronic patient records
for hospital information systems are usually organized according to the departmental
organization of the hospital. In addition, patient records in hospitals are often organized
according to accounting requirements, which also might hinder continuity of care. For
a lifetime EHR intended to serve as the information basis in a distributed healthcare net-
work, an organization according to the POMR appears to be more appropriate, as it ex-
plicitly issues follow-up documentation and easy access to relevant information, which
is particularly important when multiple healthcare providers are involved in a patient’s
treatment.

326 Richard Lenz

Decision support that goes beyond the structure of the EHR requires some kind of
automatic interpretation of medical data. This requires medical knowledge to be formal-
ly represented.

3.2 Bringing Medical Knowledge to the Point of Care

Supporting the healthcare process by bringing medical knowledge to the point of care
is closely related to developing and implementing medical practice guidelines. The
MeSH dictionary defines medical practice guidelines as “work consisting of a set of di-
rections or principles to assist the healthcare practitioner with patient care decisions
about appropriate diagnostic, therapeutic, or other clinical procedures for specific clin-
ical circumstances”. Guidelines are aimed at an evidence-based and economically rea-
sonable medical treatment process, and at improving outcomes and decreasing the un-
desired variation of healthcare quality [23]. Developing guidelines is essentially a con-
sensus process among medical experts. Yet, there is a gap between the information
contained in published clinical practice guidelines and the knowledge and information
that are necessary to implement them [23, 56]. Methods for closing this gap by using
information technology have been in the focus of medical informatics research for dec-
ades (e.g., [3, 38, 56]).

 Medical pathways can be used as a basis for implementing guidelines [52] and
sometimes they are confused with guidelines. In contrast to guidelines, though, path-
ways are related to a concrete setting and include a time component: Pathways are
planned process patterns that are aimed at improving process quality and resource us-
age. Pathways are not standardized generic processes like those described within the
IHE integration profiles. Pathways need a consensus process. This consensus, however,
is to be achieved among the process participants within a concrete setting. Pathways can
be used as a platform to implement guidelines, e.g., by routinely collecting the informa-
tion required by a guideline. Selecting a guideline for implementation also requires an
agreement of healthcare professionals and patients, because there are different kinds of
guidelines with different origins and goals, and sometimes even conflicting recommen-
dations. Likewise, to improve a patient treatment process across organizational borders,
consensus on common practices is required in the first place. Once this consensus is
achieved, the next question is how to implement it in practice. To be effective, a guide-
line must be easily accessible. Ideally, it should be embedded into the clinical work
practice, and the physician should not need to explicitly look it up. Otherwise, there is
always a risk of overlooking important information while the patient is in the office.
Previous work has primarily demonstrated a positive influence of computer-generated
alerts and reminders [55], which can be integrated into clinical work practice. Recent
research indicates that this is exactly the major difficulty with implementing more com-
plex multi-step guidelines: How to integrate them into the clinical workflow [38].

 Medical pathways are one attempt to establish a platform for implementation of
complex guidelines. Thereby, predefined checklists that ask the right questions in the
right context, predefined order sets, and well-placed reminders are some of the tech-
niques that can be used to improve process quality and reduce the required documenta-

Information Management in Distributed Healthcare Networks 327

tion overhead. In any case, all these techniques require the computer to be able to make
use of the patient’s clinical data. The first obstacle to achieving this is to represent
guidelines in a computer-interpretable form, i.e., translating narrative guidelines into
equivalent ones that use coded data. This process is cumbersome and also bares the risk
of distorting the intent of the original guideline. To overcome such problems numerous
models have been developed to formally represent medical guidelines and medical
knowledge (e.g., Arden Syntax [30], GLIF [42, 44], PROforma [22], EON [41], etc.).
Recent surveys have compared these different approaches [17, 45]. One of the central
goals of these approaches is to define standard representation formats for medical
knowledge in order to be able to share guidelines among different information systems
in different organizations. In practice, however, it turned out that the main obstacle to
be solved here is—once again—an integration problem: The data definitions in prede-
fined formal guidelines may not map to the data available in an existing electronic
health record system [47]. Typically, operational systems have to be modified and ex-
tended in order to acquire the necessary information needed for guideline implementa-
tion. Few guidelines have been successfully implemented into real clinical settings by
using these systems and predefined formally specified guidelines. Recent research has
recognized these difficulties and focuses on process models for transforming text-based
guidelines into clinical practice (e.g., [56]). Standard formats for guideline representa-
tion do have their place in guideline implementation, but the integration problems to be
solved are a matter of semantics rather than format.

 Guideline implementation requires a high level of data integration, because com-
puterized reminders typically refer to both type level and instance level semantics, and
more complex guidelines also need to refer to a formally established context comprising
status information. The challenge to be solved for distributed healthcare networks is to
establish a sufficient degree of integration as a basis for guideline implementation, and
to find practical solutions to cope with the continuous evolution of the healthcare do-
main.

 In the next section, requirements for responsive IT infrastructures are outlined and
some of the most promising approaches supporting system evolution in healthcare are
briefly introduced. Lessons learned from these approaches in clinical settings are likely
to influence the development of IT architectures for emerging healthcare networks.

4 Evolutionary Information Systems in Healthcare

Because the development of medical pathways and the implementation of guidelines is
primarily viewed as a consensus process among healthcare professionals in a concrete
setting, the functional evolution of information systems should be a demand-driven
process under the control of healthcare professionals. Standards for systems integration
have already been listed and categorized. Process integration, though, is not adressed
by standards, but by appropriate models for demand-driven software development (e.g.,
[34]). Desiderata for such a demand-driven process are:

328 Richard Lenz

• Rapid application development
To be able to flexibly react to newly arising demands, tools and techniques for rapid
application development (RAD) are desirable. To reuse existing data and services
and to achieve integrated applications, such tools should be build upon a standard IT
infrastructure for healthcare networks.

• Robust and stable integrated domain-specific IT infrastructure
An IT infrastructure for a healthcare network should provide a robust and stable basis
for application development. Thus, the framework should be based on generic do-
main models instead of comprehensive but volatile domain models.

• Separation of domain concepts and system implementation
To cope with domain evolution, modeling of domain concepts should be separated
from IT system implementation. IT systems should be implemented by IT experts
and medical knowledge should be modeled and maintained by domain experts. Yet,
separating the modeling of medical knowledge from implementing an IT infrastruc-
ture is not easy, because algorithms (such as reminder systems) typically refer to
medical knowledge to fulfill their task.

• Multi-level software engineering approach
To bring application development as close to the end user as possible, a multi-layered
software engineering approach is proposed. An idealized abstract model for such a
multi-level approach for software engineering is shown in Fig. 1.
Layered approaches have proven to be a successful technique for separating con-

cerns. In different traditional areas of computer science such as operating systems, da-
tabase systems [25], and communication systems [59] layered approaches have been
successfully used to reduce system complexity. Transferring this principle to the devel-
opment of information systems in complex application domains in order to achieve both
flexibility and robustness seems to be self-evident. The rationale in this particular con-
text is to allow application developers and end users to build well integrated healthcare
applications without the need to do low level encoding [8]. Appropriate tool support is
needed at each level of abstraction to effectively make use of the lower system layers.

A layered approach, as sketched above, fosters a system evolution process that fol-
lows the principle of “deferred systems design” [43], which is particularly suitable for
evolving application domains. Some important techniques and tools directed towards
such multi-layered approaches are briefly introduced.

4.1 Terminology Servers

Controlled vocabularies can significantly contribute to a successful guideline imple-
mentation. Thus, standard vocabularies and terminology servers supporting their use in
healthcare IT applications are highly desirable. A terminology server can help to sepa-
rate terminological control from application development. A successful proprietary ex-
ample of such a terminology server is the Medical Entities Dictionary (MED) from Co-
lumbia Presbyterian Medical Center [14, 21]. The MED comprises more than 70000

Information Management in Distributed Healthcare Networks 329

concepts and is continuously being extended (about 6000 entries per year). It is based
on comprehensive external thesauri (such as the UMLS) and integrates standard classi-
fications such as ICD and LOINC [51].

Basically, the MED is a semantic network incorporating a classification hierarchy.
This classification is based on an acyclic directed graph. At least one path connects each
node in this graph representing a medical concept with the root node representing the
concept “Medical Entity”. In addition to this hierarchy arbitrary concepts can be inter-
connected via “semantic links”. A concept editor is used to maintain and extend the con-
tents of the MED. User interfaces for presentation, navigation, and programming inter-
faces used within new applications are essential parts of the terminology server.

By the use of such a terminology server the task of semantic integration can be ad-
dressed. Thereby a two level software engineering approach is assumed: Existing appli-
cations and COTS (“Commercial Off-the-Shelf”) components are connected to the
MED by mapping the proprietary concepts of these systems to MED concepts. If nec-
essary, the MED is extended appropriately. In essence, this mapping process is a typical
data integration process which cannot be automated and in some cases even requires the
modification of a software component. However, an additional software layer of new
applications can benefit from the MED, because new applications can use the MED to
refer to medical data via generic concepts. Thus, these applications do not need to be
modified when the conceptualization of some ancillary system is changed.

The MED is just one example of a successful proprietary terminology server. Most
hospitals in Germany use controlled terminologies only for consistent encoding of di-
agnoses and procedures (ICD/ICPM). However, more comprehensive terminology
servers based on available terminology standards are increasingly being offered com-
mercially [29].

Fig. 1 A Layered Approach for System Evolution

330 Richard Lenz

4.2 Knowledge-Based Systems

Knowledge-based systems are motivated by the fact that most information systems to-
day have built both informational and knowledge concepts into one level of object and
data models. As medicine is characterized by complexity, large numbers of concepts,
and a high rate of definitional change, such systems are expensive to maintain and are
frequently replaced [5]. In order to increase the lifetime of software products and to
make systems more maintainable, a two-level methodology is proposed, in which sys-
tems are built from information models only and driven at runtime by knowledge level
concepts.

An example of such an approach is the concept of “archetypes”, which has been in-
troduced in the context of the OpenEHR project [6]. Information systems following this
approach are based on a comparatively small reference model for objects. Archetypes
are interpreted at runtime and are used to constrain instances of this reference model.
Archetypes are defined by the use of a formal model or “language of archetypes”. Ac-
tually, this language is an “archetype reference model” which is derived from the refer-
ence model of the information system under concern—any given archetype is an in-
stance of this model. The advantage of the archetype concept is that medical knowledge
can be modeled by medical experts instead of computer scientists and added to a run-
ning system without the need for schema modifications.

Another example for a rigorous knowledge-based approach is the EON system for
guideline implementation. EON strictly separates the knowledge that a decision support
system contains and the problem-solving procedures that operate on that knowledge
[40]. Unlike traditional stand alone decision support systems that require physicians to
explicitly enter data before recommendations are given, EON is intended to be embed-
ded into some healthcare information system. The motivation for this is to learn from
the success of simple reminder systems that are able to instantly respond to changes in
the clinical situation, e.g., as soon as the data is entered into the computer. Thus, EON
addresses both separation of concerns and embedding decision support into clinical
work practice.

Today, approaches like EON and archetypes are still rarely used in practice, but the
underlying ideas address some of the core problems of systems integration which need
to be solved when IT-enabled cross organizational evidence-based medicine should be-
come reality.

5 Infrastructure for Healthcare Networks

Current efforts in many countries are aimed at establishing the necessary infrastructures
for healthcare networks. Yet, the vision sketched in this article is still in its early stages.
Along with legal and organizational questions, the highest priority is typically attributed
to security and integration issues. To enable rapid progress, integration is typically tack-
led by focusing on HL7 and particularly CDA, whereas the question of patient identifi-

Information Management in Distributed Healthcare Networks 331

cation and some kind of MPI functionality is the necessary first step to consolidate pa-
tient data from different sources.

Basic infrastructures are being built in different countries. Smart cards for both pa-
tients and healthcare professionals are increasingly used for authentication purposes. In
Germany, basic demographic information is already stored on obligatory patient insur-
ance cards. Current initiatives are intended to significantly broaden the scope of patient
cards. In the first instance, the new patient card is primarily intended to serve as a me-
dium for electronic prescriptions. Yet, it is already designed to carry both administrative
data (e.g., patient demographics, physician and insurance information) and clinical data
(such as problem list, discharge letter, emergency record, etc.). The most important con-
tribution is a unique personal identification number stored on the card, which is a big
step towards a consolidation of patient data from disparate institutions. In principle, this
identification is sufficient to enable access to patient-related data stored in some (pos-
sibly virtual) EHR, provided that an appropriate security infrastructure is in place. Stor-
ing additional structured data on the patient card will lead to a schema-matching prob-
lem with existing healthcare information systems. Thus, to achieve a usable instrument
within a reasonable time, which still can be used for varying purposes and even newly
arising purposes, the standardization of patient card contents should be limited to essen-
tial data items and generic fields. The core functionality of the patient card should be to
provide access to an evolving healthcare network. The final architecture of this network
cannot be predicted and will result from domain-specific demands.

 There is still a long way to go until these first steps will lead to an architecture for
a distributed lifetime patient record. A leveled approach as presented in this article
could help to rapidly start with a workable solution and incrementally improve the qual-
ity of healthcare on this basis.

References

[1] Alonso G, Casati F, Kuno H, Machiraju V. Web Services—Concepts, Architectures and
Applications. Berlin: Springer, 2003.

[2] Bange C. Von ETL zur Datenintegration . IT Fokus 2004; 3(4): 12-16.
[3] Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L, et al. Ten commandments

for effective clinical decision support: making the practice of evidence-based medicine a
reality. J Am Med Inform Assoc 2003; 10(6): 523-530.

[4] Batini C, Lenzerini M, Navathe SB. A Comparative Analysis of Methodologies for Data-
base Schema Integration. ACM Computing Surveys 1986; 18(4): 323-364.

[5] Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Sys-
tems. In: OOPSLA 2002 workshop on behavioural semantics: 2002

[6] Beale T. Archetypes and the EHR. Stud Health Technol Inform 2003; 96: 238-244.
[7] Berger R. Telematik im Gesundheitswesen – Perspektiven der Telemedizin in Deutsch-

land. München: Bundesministerium für Bildung, Wissenschaft, Forschung und Technolo-
gie und Bundesministerium für Gesundheit, 1997.

332 Richard Lenz

[8] Beyer M, Kuhn KA, Meiler C, Jablonski S, Lenz R. Towards a flexible, process-oriented
IT architecture for an integrated healthcare network. In: Proceedings of the 2004 ACM
Symposium on Applied Computing (SAC), ACM, 2004: 264-271.

[9] Bhasale AL, Miller GC, Reid SE, Britt HC. Analysing potential harm in Australian general
practice: an incident-monitoring study. Med J Aust 1998; 169(2): 73-76.

[10] Bidgood WD, Horii SC, Prior FW, Van Syckle DE. Understanding and Using DICOM, the
Data Interchange Standard for Biomedical Imaging. Journal of the American Medical In-
formatics Association 1997; 4(3): 199-212.

[11] Bouguettaya A, Benatallah B, Elmagarmid A. Interconnecting Heterogeneous Information
Systems. Boston: Kluwer Academic Publishers, 1998.

[12] Brennan TA, Leape LL. Adverse events, negligence in hospitalized patients: results from
the Harvard Medical Practice Study. Perspect Healthc Risk Manage 1991; 11(2): 2-8.

[13] Brennan TA, Leape LL, Laird NM, Hebert L, Localio AR, Lawthers AG, et al. Incidence
of adverse events and negligence in hospitalized patients. Results of the Harvard Medical
Practice Study I. N Engl J Med 1991; 324(6): 370-376.

[14] Cimino JJ. From data to knowledge through concept-oriented terminologies: experience
with the Medical Entities Dictionary. J Am Med Inform Assoc 2000; 7(3): 288-297.

[15] Committee on Quality of Health Care in America IoM. Crossing the Quality Chasm: A
New Health System for the 21st Century. IOM, 2001.

[16] Conrad S. Schemaintegration – Integrationskonflikte, Lösungsansätze, aktuelle Heraus-
forderungen. Informatik – Forschung und Entwicklung 2002; 17(3): 101-111.

[17] de Clercq PA, Blom JA, Korsten HH, Hasman A. Approaches for creating computer-inter-
pretable guidelines that facilitate decision support. Artif Intell Med 2004; 31(1): 1-27.

[18] Dick RS, Steen EB. The Computer-Based Patient Record: An Essential Technology for
Health Care. 2nd ed. Washington DC: National Academy Press, 1997.

[19] Elmagarmid, A., Rusinkiewicz, M., and Sheth, A. eds. Management of Heterogeneous and
Autonomous Database Systems. San Francisco, CA: Morgan Kaufmann Publishers, 1999.

[20] Fayad M, Johnson R. Domain-specific application frameworks
frameworks experience by industry. New York: John Wiley, 2000.

[21] Forman BH, Cimino JJ, Johnson SB, Sengupta S, Sideli R, Clayton P. Applying a control-
led medical terminology to a distributed, production clinical information system. In:
Proc.Annu.Symp.Comput.Appl.Med.Care; 1995: 421-425.

[22] Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge: the PROforma ap-
proach. Artif Intell Med 1998; 14(1-2): 157-181.

[23] Gross PA, Greenfield S, Cretin S, Ferguson J, Grimshaw J, Grol R, et al. Optimal methods
for guideline implementation: conclusions from Leeds Castle meeting. Med Care 2001;
39(8 Suppl 2): II85-II92.

[24] Haux R, Ammenwerth E, Herzog W, Knaup P. Gesundheitsversorgung in der Information-
sgesellschaft – eine Prognose für das Jahr 2013. Informatik – Biometrie und Epidemiolo-
gie in Medizin und Biologie 2004; 35(3): 138-163.

[25] Härder T. Realisierung von operationalen Schnittstellen. In: Lockemann PC, Schmidt JW,
editors. Datenbank-Handbuch. Berlin: Springer-Verlag, 1987.

[26] Härder T, Hergula K. Ankopplung heterogener Anwendungssysteme an Föderierte Daten-
banksysteme durch Funktionsintegration. Informatik – Forschung und Entwicklung 2002;
17(3): 135-148.

[27] Heiler S. Semantic Interoperability. ACM Computing Surveys 1995; 27(2): 271-273.

Information Management in Distributed Healthcare Networks 333

[28] Huff SM, Bidgood WD, Jr., Cimino JJ, Hammond WE. A proposal for incorporating
Health level seven (HL7) vocabulary in the UMLS Metathesaurus. In: Proc.Amia.Symp.;
1998: 800-804.

[29] ID GmbH. ID MACS – Das semantische Netz. 2004. Berlin, ID – Gesellschaft für Infor-
mation und Dokumentation im Gesundheitswesen mbH.
http://www.id-berlin.de/deu/_2produkte/macs.php

[30] Jenders RA, Hripcsak G, Sideli RV, DuMouchel W, Zhang H, Cimino JJ et al. Medical
decision support: experience with implementing the Arden Syntax at the Columbia-Pres-
byterian Medical Center. In: Proc.Annu.Symp.Comput.Appl.Med.Care; 1995: 169-173.

[31] Kim W, Seo J. Classifying Schematic and Data Heterogeneity in Multidatabase Systems.
IEEE Computer 1991; 24(12): 12-18.

[32] Kohn LT, Corrigan JM, Donaldson MS. To Err Is Human. Building a Safer Health System.
Washington D.C.: National Academy Press, 2000.

[33] Lenz R, Huff S, Geissbühler A. Report of conference track 2: pathways to open architec-
tures. Int J Med Inf 2003; 69(2-3): 297-299.

[34] Lenz R, Kuhn K.A. Towards a Continuous Evolution and Adaptation of Information Sys-
tems in Healthcare. Int J Med Inf 2004; 73(1): 75-89.

[35] Lenz R, Kuhn KA. Intranet meets hospital information systems: the solution to the integra-
tion problem? Methods Inf Med 2001; 40(2): 99-105.

[36] Lenz R, Kuhn KA. Zur Architektur und Evolution von Krankenhausinformationssyste-
men. In: Dittrich K, König W, Oberweis A, Rannenberg K., Wahlster W, (eds.): Informatik
2003 – Innovative Informatikanwendungen, Beiträge der 33.Jahrestagung der Gesellschaft
für Informatik e.V.(GI);2: Lecture Notes in Informatics (LNI), 2003: 435-444.

[37] Luftman JN, Papp R, Brier T. Enablers and Inhibitors of Business-IT Alignment. Commu-
nications of the Association for Information Systems 1999; 1(11).

[38] Maviglia SM, Zielstorff RD, Paterno M, Teich JM, Bates DW, Kuperman GJ. Automating
complex guidelines for chronic disease: lessons learned. J Am Med Inform Assoc 2003;
10(2): 154-165.

[39] McDonald CJ, Hui SL, Smith DM, Tierney WM, Cohen SJ, Weinberger M, et al. Remind-
ers to physicians from an introspective computer medical record. A two-year randomized
trial. Ann Intern Med 1984; 100(1): 130-138.

[40] Musen M, Shahar Y, Shortliffe EH. Clinical decision support systems. In: Shortliffe EH,
Perreault LE, Wiederhold G, Fagan LM, editors. New York: Springer, 2000: 573-609.

[41] Musen MA. Domain ontologies in software engineering: use of Protege with the EON ar-
chitecture. Methods Inf Med 1998; 37(4-5): 540-550.

[42] Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE, et al. The guide-
line interchange format: a model for representing guidelines. J Am Med Inform Assoc
1998; 5(4): 357-372.

[43] Patel N. Adaptive Evolutionary Information Systems. London: Idea Group Publishing,
2003.

[44] Peleg M, Boxwala AA, Ogunyemi O, Zeng Q, Tu S, Lacson R, et al. GLIF3: the evolution
of a guideline representation format. Proc Amia Symp 2000; 645-649.

[45] Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, et al. Comparing computer-inter-
pretable guideline models: a case-study approach. J Am Med Inform Assoc 2003; 10(1):
52-68.

334 Richard Lenz

[46] Pille BT, Antczak RK. Application Integration. In: Ball MJ, Douglas JV, editors. Perform-
ance Improvement Through Information Management. New York: Springer, 1999: 144-
152.

[47] Pryor TA, Hripcsak G. Sharing MLM's: an experiment between Columbia-Presbyterian
and LDS Hospital. In: Proc.Annu.Symp.Comput.Appl.Med Care; 1993: 399-403.

[48] Rahm E, Bernstein PA. A survey of approaches to automatic schema matching. The VLDB
Journal 2001; 10(4): 334-350.

[49] Rector AL, Nowlan WA. The GALEN project. Comput Methods Programs Biomed 1994;
45(1-2): 75-78.

[50] Rector AL, Nowlan WA, Glowinski A. Goals for concept representation in the GALEN
project. In: Proc.Annu.Symp.Comput.Appl.Med.Care; 1993: 414-418.

[51] Rocha RA, Huff SM. Coupling vocabularies and data structures: lessons from LOINC. In:
Proc.AMIA.Annu.Fall.Symp.; 1996: 90-94.

[52] Schriefer J. The synergy of pathways and algorithms: two tools work better than one. Jt
Comm J Qual Improv 1994; 20(9): 485-499.

[53] Seliger, R. Overview of HL7's CCOW Standard. 2001. Health Level Seven, Inc.
http://www.hl7.org/library/committees/sigvi/ccow_overview_2001.doc

[54] Sheth A, Larsen J. Federated Database Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases. ACM Computing Surveys 1990; 22(3): 183-235.

[55] Shiffman RN, Liaw Y, Brandt CA, Corb GJ. Computer-based guideline implementation
systems: a systematic review of functionality and effectiveness. J Am Med Inform Assoc
1999; 6(2): 104-114.

[56] Shiffman RN, Michel G, Essaihi A, Thornquist E. Bridging the guideline implementation
gap: a systematic, document-centered approach to guideline implementation. J Am Med
Inform Assoc 2004; 11(5): 418-426.

[57] Stonebraker M. Integrating islands of information. EAI Journal 1999;(September/Octo-
ber): 1-5.

[58] Tan FB, Gallupe RB. A framework for research into business-IT alignment: a cognitive
emphasis. In: Kangas K, editor. Business strategies for information technology manage-
ment. Hershey, PA, USA: Idea Group Publishing, 2003: 50-73.

[59] Tanenbaum AS. Computer networks. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1988.
[60] van Bemmel, J. H. and Musen, M. A. eds. Handbook of Medical Informatics. Heidelberg:

Springer, 1997.
[61] Vegoda P. Introducing the IHE (Integrating the Healthcare Enterprise) concept. J Healthc

Inf Manag 2002; 16(1): 22-24.
[62] Vincent C, Neale G, Woloshynowych M. Adverse events in British hospitals: preliminary

retrospective record review. BMJ 2001; 322(7285): 517-519.
[63] Weed LL. Medical records that guide and teach. The New England Journal of Medicine

1968; 278(12): 652-657.
[64] Wilson RM, Harrison BT, Gibberd RW, Hamilton JD. An analysis of the causes of adverse

events from the Quality in Australian Health Care Study. Med J Aust 1999; 170(9): 411-
415.

[65] Wilson RM, Runciman WB, Gibberd RW, Harrison BT, Newby L, Hamilton JD. The
Quality in Australian Health Care Study. Med J Aust 1995; 163(9): 458-471.

[66] Wingert F. SNOMED-Manual. Berlin: Springer-Verlag, 1984.

T. Härder and W. Lehner (Eds.): Data Management (Wedekind Festschrift), LNCS 3551, pp. 335-356, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Managment for

Engineering Applicat ions

Hans-Peter Steiert

DaimlerChrysler Research, Ulm, Germany
hans-peter.steiert@daimlerchrysler.com

Abstract. Current database technology has proven to fulfill the requirements
of business applications, i.e., processing a high number of short transactions
on more or less simple-structured data. Unfortunately, the requirements of
engineering applications are quite different. A car’s bill of material, for ex-
ample, is a deep tree with many branches at every level. Data objects become
even more complex if we consider the engineered design objects themselves,
as for example a gear box with its parts and how they are related to each other.
Supporting complex data objects has many implications for the underlying
data management system. It needs to be reflected at nearly any layer, from
the API down to the storage system. Besides complex objects, the way design
objects are processed in engineering applications differs from business appli-
cations. Because engineering is an explorative task, the concept of short
transactions does not fit here. Working with design objects is a task of days,
which leads to a different programming model for engineering applications.
In addition, the data management system needs to support versioning of ob-
jects and configuration management. Furthermore, engineering is done in a
collaborative team. Hence, sharing of design objects in a team is necessary
while, at the same time, their collaborative work has to be synchronized. All
those special requirements have to be considered in data management sys-
tems for engineering applications. In this contribution, the special require-
ments, as sketched above, are characterized. Also the approaches developed
to cope with these requirements will be described.

1 Introduction

Business applications have been always the main focus of data management systems.
Hence, current data management technology is able to serve most of the demands of this
domain very well. Other domains with differing requirements have to cope with less
support, for example, the engineering domain. Although engineering databases have
been well researched [2, 10, 18, 23], support for engineering applications in current da-
tabase or middleware technology is still marginal. Therefore, existing technology still
requires adoption to the needs of the engineering applications.

336 Hans-Peter Steiert

The most demanding challenge today is not data management itself but to support
a seamless flow of data through all tools used in the product creation process, i.e., con-
struction tasks as well as production-related activities. Of course, this has a lot of dif-
ferent aspects and discussing all of them is beyond the scope of this paper. Therefore,
we will focus on a selection of topics which are of special interest because of new
trends:

• Building up an IT infrastructure never starts at the open field. Instead it is always the
result of an evolutionary process. This is the first reason, why the IT landscape of any
larger company will always be heterogeneous. The second reason for heterogeneity
is that engineering processes need to be supported by many highly specialized engi-
neering applications. Therefore, the all-in-one engineering tool is more utopia than
reality. Each of these tools is optimized for a given task and so are the data structures:
CAD applications may work with data structures that support free-form surfaces.
Tools for crash simulation require, for example, finite-element meshes. The bill of
material may be implemented as a graph with simple-structured nodes which contain
links to large chunks of external information. The challenge for data management is
to support each tools with its appropriate data format, ensure the seamless flow be-
tween tools and enable an integrated view upon all relevant data, if required. In sec-
tion 2 we will discuss the utilization of current integration technology within engi-
neering processes.

• Another important aspect in engineering processes is agility. Because such processes
cover long running activities, there is always a need to adapt to new requirements.
On the other hand, application integration creates dependencies between applica-
tions and those are an inherent risk for agility, because changes within one applica-
tion or within the process need to consider all dependent applications. That is why
we need to take countermeasures to ensure that changes can still be applied. In sec-
tion 3 we will describe an approach for development and maintenance of integration
solutions which does reflect this need.

• Engineering processes involve many parties inside and outside a company. Especial-
ly, integration of suppliers has become more and more important during the last
years. This results in a need to manage the flow of engineering data in the product
creation process as it leaves the company and comes back again. In such a scenario,
the task of providing the required data in the right format at the right time is a de-
manding challenge. In section 4 we will describe first steps done towards managed
cross-company data flows.
In the next paragraphs, we will discuss these three challenges of engineering data

management.

2 Applying Integration Technology in Engineering Domains

Application integration is a crucial point in order to support faster engineering process-
es. The advantages of application integration have already been discussed [11, 22]. Sev-

Data Managment for Engineering Applications 337

eral integration technologies (and related products) do address the problem of applica-
tion integration. As often, it is helpful to discuss applications integration in layers, from
the data management layer at the bottom to the graphical user interface layer at the top.
For each of these layers, integration technology has been developed in order to cope
with the particular challenges. And because each layer has its own demands, the an-
swers have been quite different. Fig. 1 shows an abstract representation of a layered in-
tegration architecture.

The overall goal of application integration is to cope with distribution, heterogene-
ity, and autonomy [28]. Distribution means that data and operations are spread over sev-
eral data stores and application systems. Heterogeneity refers to the semantics of data
and operations, the syntax of data formats and signatures, and the technologies used.
Autonomy is related to the fact that each application has been developed and is main-
tained on its own. Through application integration autonomy is reduced, usually.

In Fig. 1, we also show B2B integration but, because this will be our topic in section
4, we skip it here and start with integration at the front end.

2.1 Integration at the User Interface Level

From the end-user's perspective, integration has been successful, if the user is not able
to differentiate the sources of data and functionality it accesses from the user interface.
In the area of web applications, so-called portals have been successfully applied in pro-
viding user-interface-level integration, i.e., providing integrated access to data and ap-
plications through one common user interface.

Fig. 1 Layers of Integration

Data

Application Application Application
Broker

Processes

B2BB2B

User Interface

Services

338 Hans-Peter Steiert

Although portal technology is very helpful in the engineering domain [1], too, it has
several limitations. First, portals hide heterogeneity of user interfaces but are not able
to hide heterogeneity of data and operations. If serial numbers stem from different sys-
tems with distinct formats, the end user will see two different numbers, even if the same
part is displayed at the screen. Such effects have to be hidden at lower levels of the in-
tegration architecture. Second, portal technology has its strength in integrating web ap-
plications, i.e., applications with HTML-based front end. Unfortunately, web applica-
tions do not fit very well in the engineering domain. Many tasks require highly special-
ized rich client applications because of the need for presenting complex CAD data and
high demands on computing power for calculations. Third, the engineer's work is highly
creative and interactive which does not fit well into the mask-oriented user guidance of
web applications.

An alternative to using portals are Microsoft's technologies, e.g., Object Link Em-
bedding (OLE), for giving access to data and operations of one desktop application to
another. Unfortunately, no open standards are known for this. With Microsoft enabling
its office tools for access to other applications through web services, this kind of inte-
gration may become more important. We highly encourage further research in this field.

2.2 Integration at the Engineering Process Level

Some of the drawbacks of today's integration technology at the user interface can be re-
duced through process-level integration. The idea is to provide suitable data formats to
the engineering application as part of a workflow (Fig. 2). Preceding steps in the work-
flow fetch data from the data sources and apply transformations so that the engineering
application receives the data to work with in an integrated and homogenized format. Af-
ter the engineering task has been fulfilled, the result is distributed to the data sources
and transformed back into their proprietary formats. This works fine for the large and
complex data chunks which are typical for engineering data. One further advantage is
that usually no changes need to be done to the participating applications, i.e., a high de-
gree of autonomy is preserved. Unfortunately, it does not fit well for fine-grained data
and short operations because of the overhead generated by the workflow control mech-
anism. Another drawback is that the workflows need to be preplanned which is not very
common in engineering, as we have discussed before.

2.3 Integration at the Engineering Service Level

Support for access to fine-grained data and short operations (today often called “servic-
es”) provided by application systems is the task of levels below processes. We call it
service-level integration. The idea behind this is to provide an integrated view to several
data sources and service providers (base services) through an application programming
interface (API) which consists of a collection of services. From a client's point of view
the API seems to give access to one application system , because all aspects of hetero-
geneity are hidden behind the API in the services implementation. The services do hide

Data Managment for Engineering Applications 339

both, the underlying implementation technology as well as the communication proto-
cols used to access the base services. Further, the API provides an integrated view upon
the base services, because it integrates the data from several base services to one com-
mon object model. In addition, the API may provide value-added services.

This approach is well supported by a set of emerging technologies in the area of
J2EE (Java 2 Enterprise Edition) [33] and Web services [35]. Service aggregation is
supported by BPEL (Business Process Execution Language) [13] which becomes avail-
able in the next generation of J2EE servers [14]. Access to applications is supported
through the J2EE Connector Architecture (J2A) standard [34], message-driven beans
[33] and support for calling Web services. Using XML [36] has become the standard
way for technology-independent representation of data and XSLT [8] is widely used for
data transformation. If it comes to signatures, WSDL [7] is used to describe services in
an technology-independent way.

Integration at the service layer is well suited if online access to the base services is
required. Unfortunately, the efforts for integration are high because of the need for a
federated data model of the underlying data sources. Also, overall performance highly
depends on choosing the granule of data and operations well. Additionally, existing ap-
plications need to be adapted if access to the integration layer is required.

2.4 Integration Through Message Brokers

There exists a second approach which does access the base services provided by appli-
cation systems. The idea of message-broker-based integration is to recognize events in
the application systems which are relevant to others. This task is performed by an adapt-
er which connects the application system to the message broker [15]. If the adapter has
recognized an event, it fetches the related data from the application. Afterwards the
message broker receives a message from the adapter. Because of routing rules the mes-
sage broker knows for which applications this event is relevant. It forwards the message

Fig. 2 Process-level Integration

ApplicationApplication ApplicationApplication ApplicationApplication

F

T

AF

T

S

T

340 Hans-Peter Steiert

to the adapters of those systems. If data transformations are required, those are per-
formed by the broker (Fig. 3).

Message brokering is usually not used in engineering so far for several reasons.
First, no adapters are available for the engineer's desktop applications so that the usage
is limited to backend applications. Second, data exchange between backend applica-
tions usually does mean to transmit large chunks of data, e.g., a CAD file from a PDM
system to another. Current broker technology has been developed for business applica-
tions with a high number of small data items and it is not able to handle large data items
well.

2.5 Integration at the Database Management Layer

Database layer integration has been researched very well. Database replication, data
warehousing, federated databases, distributed databases, and many other approaches
have been developed in this area. Some of them have been successfully applied in en-
gineering domains.

For example, data warehousing becomes important as a base technology for build-
ing business intelligence solutions in order to support project management [12]. Even
if the amount of data is low, compared with similar applications in the business domain,
there are quite a few challenges. For example, we have to cope with much more heter-
ogeneity, because a lot of (semi-structured) data is stored in office applications on the
desktop and not in backend systems.

Fig. 3 Broker-based Integration

Application

Application

Application

Application

Application

BrokerBroker

Application

Adapter

Rule

Event

Adapter

ApplicationApplication

ApplicationApplication

ApplicationApplication

ApplicationApplication

ApplicationApplication

BrokerBroker

ApplicationApplication

Adapter

Rule

Event

Adapter

Data Managment for Engineering Applications 341

Also, concepts from federated databases have been applied [32]. Unfortunately,
most databases are hidden within the application systems. Therefore, integration at the
database layer is mostly not possible because of a lack of information about the seman-
tics of the database schema. Nevertheless, many concepts from federated databases
have been successfully used for integration at the service layer.

3 Enabling Agility in the Presence of Integration

Unfortunately, the risks of application integration are often neglected. Because integra-
tion means to create dependencies between applications this may reduce the ability of
an IT infrastructure to adapt to changes, i.e., its agility. Dependencies are bad, because
they increase complexity which leads to increased efforts and a higher probability of
making mistakes.

For example, if changes need to be applied to one application all other dependent
applications have to be checked whether or not they are affected by the change. Without
counter measures the result of integration may be one big integrated system of intercon-
nected applications where no changes can be done any more because no one knows
what will happen. This is especially worse in engineering, because the number of sys-
tems is even higher than in the business domain. Further, engineering processes are less
strict. Therefore, frequent changes are typical and the ability to adapt also the IT is cru-
cial. Why is agility so hard to ensure? There are three main reasons:

• No consistent view on all current application systems.

• Heterogeneity of all artefacts, technical and non-technical.

• Distribution of application systems and organizations.
The first point results from the fact that it seems nearly impossible to ensure con-

sistency of documentation and running systems. Because usually informal methods are
used, documentation does not provide a detailed view on the system even in the begin-
ning. Things become worse during the system's lifetime when changes are made in or-
der to react spontaneous to new business demands or to fix problems. Typically, docu-
mentation falls behind the real environment fast. But without a consistent view upon the
application systems we can not really understand the effects of changes.

The second point does not only cover heterogeneity of the application systems
themselves. It is also related to all other artefacts as metadata, integration toolsets, doc-
umentation templates, development processes and so on. This is because every consult-
ing firm brings in its own development process and documentation guidelines into the
project. Further, there is no “one tool fits it all” way of integration. If multiple integra-
tion technologies are applied in a project, e.g., a portal and an integration service, then
each of those has its own tools and metadata standards. Therefore, we have to look in
many different information sources in order to gain a snapshot of what is currently run-
ning.

342 Hans-Peter Steiert

The third point does also cover more than just the technical stuff. From the technical
perspective it is difficult enough to ensure that all changes have been applied consistent
in a distributed system. But there is also an organizational aspect: Application integra-
tion means to bring together applications owned, managed and maintained by different
departments. Hence, no single source of information exists. Even simple maintaining
tasks require workshops with many people from different organizational units. Experi-
ence shows that it is even more difficulty to ensure that humans talk about the same than
it is for computers.

If we want to cope with those challenges we have to ensure that there is one central
documentation source which does reflect the current state of the whole integrated sys-
tem. A development and maintenance process with appropriate tool support has to en-
sure that the documentation becomes consistent in the beginning and stays consistent
during the whole life-cycle. The approach has to fit in current development methods and
needs to be practicable with multiple integration toolsets. Four scenarios need to be sup-
ported (Fig. 4):

• Central, uniform and automated documentation.

• Developing a new integrated system.

• Updating and maintaining an existing integrated system.

• Migrating an integrated system to new technology.
The key idea behind supporting the first point is to take advantage of the most cur-

rent information available, which resides in the metadata stores of development tools
and integration toolsets. It describes the current productive environment. This informa-
tion needs to be automatically imported into a central documentation repository (which
means integration of metadata of heterogeneous sources!). Further, information should
be collected where it is created. Because development tools, administration tools and
documentation tools usually provide the ability to add comments, this feature has to be
used extensively. All those comments have to be collected, needs to be related to the
metadata and stored in the repository. In order to be able to cover also the information
created by humans as documents those have to follow strict documentation standards.
So the documents can be analyzed automatically and the content can be stored in the
repository together with the other data. The advantage of this approach is that it be-
comes much easier to hold reality and documentation consistent. Because everything is
stored in a central repository and related to each other it becomes possible to check con-
sistency, completeness, and correctness with respect to guidelines. The central reposi-
tory helps to get a current view on the system and to avoid heterogeneity of non-tech-
nical artefacts.

The second point is about creating a new system from scratch. An appropriate de-
velopment process has to ensure that the repository is filled with meaningful informa-
tion. In order to support development well, we need

• an appropriate iterative development process which starts with an abstract plan and
leads to a solution in a sequence of refinement steps,

• formalized intermediate results which can be stored within the repository,

Data Managment for Engineering Applications 343

• support for an overall view on the results of each level of refinement,

• support for navigation from the more abstract level to the more concrete level and
vice versa,

• refinement relationships in the repository have a well defined meaning and enable
tools to check whether or not a refinement is valid w.r.t. to the level above, and

• tools to (semi-)automatically generate a integration solution from the lowest level of
refinement.
The third point, maintenance, has to be supported in both directions. In a top down

approach, changes may be applied in the same way as described for development. We
start at the abstract level and iteratively refine the artifacts until code generation can oc-
cur. Because experience shows that often changes need to be applied fast, we also have
to support a bottom-up approach. Those changes need to be propagated from the lowest
level up to the highest level of abstraction. This has to happen automatically as far as
possible. If propagation is not possible the repository must at least identify whether or
not the changes are in conflict with the specifications made at the level above.

Last but not least, the biggest step will be support for migration to a new product,
i.e., integration toolset. So far, this means a re-implementation of the whole integrated
system. With a central repository storing all the information collected from the metada-
ta and all artifacts from the development process it will be much easier. Through appro-
priate input filters and code generators for the new product the content of the repository
may serve as an 'exchange format'.

Fig. 4 Repository-based Approach

344 Hans-Peter Steiert

On the first glance all this seems to be more a wish than a reachable goal. But in real
products some vendors have done the first step towards this approach [31]. Unfortu-
nately this does not fit well in large enterprises, because a vendor-specific approach is
always related only to one integration toolset. In the next paragraph we will sketch how
this wish may become reality through model-based application integration even for
multiple products.

3.1 Model-Based Management of Integrated Systems

The approach presented here is related to the OMG's (Object Management Group) pro-
posal for model-based software development: Model-Driven Architecture (MDA) [21].
It has been developed at the University of Stuttgart in cooperation with DaimlerChrys-
ler Research and Technology and is named RADES (Reference Architecture for the
Documentation and Support of EAI Solutions) [9].

In MDA a software system is developed in three major phases. First, a conceptual
model of the system to be developed is created. This model describes the system as pre-
cise as possible but does not contain any information related to the technology used for
implementation. It is called the platform independent model (PIM). In the second step
this model is refined by adding implementation specific details. If more than one target
platform has to be supported multiple of those platform-specific models (PSM) may be
created. The term platform is used for the set of technologies used for implementation.
One key idea behind this refinement step is to enable semi-automatic transformations

Fig. 5 Model-driven Integration Process

Generate Code and

Configuration Parameters

Deploy into Environment

Platform

Independent

Model (PIM)

Platform

Specific

Model (PSM)

Product Specific

Model (PM)

Generated Code

and Configuration

Parameters

Productive

Environment

Define Solution Architecture

Refine Solution Architecture

Define Workflow

Architectural Pattern

Product Profiles

Generation Rules

Environment

Data Managment for Engineering Applications 345

from PSM to PIM. In last step generators create code and deployment information from
the PSM. Within MDA all activities are related to one model of the system, which is
typically expressed using the language elements of UML [25, 26].

This three step approach is to simplistic for real integration projects. Therefore, the
RADES approach introduces two additional phases. In RADES the PSM is still product
independent and does only describe the overall architecture. It is more precise than the
PIM, because, because it does describe the architectural integration pattern to be used
for the implementation. But it does not contain any product specific details. Hence, an
additional step is needed to refine the model and add such details. This split is required
in order to reflect that multiple products can be used to implement the same architectur-
al integration pattern. Especially, it is needed in order to support the migration scenario.

Another limitation of MDA is that it does not cover the deployment step. In our case
this is necessary in order to support the maintenance scenario. In order to be able to use
the generated code in several physical environments, it can not include information
about physical layout, as for example IP addresses. Hence, RADES introduced a de-
ployment step in which logical names are replaces by physical ones and the result is de-
ployed to physical machines.

All artefacts created within the RADES process are described using the same mod-
elling language, i.e., UML, except for the last two. Those are source code and configu-
ration parameters which are specific to the used products. Even if possible, it does not
make sense to use UML for this, in our point of view. Nevertheless, all artefacts includ-
ing source code and parameters are managed by the repository.

Fig. 6 Example

«System»

Invoice

«System»

Billing

«DataFlow»«System»

Invoice

«System»

Billing

«DataFlow»

«System»

Invoice

«System»

Billing

«DataFlow»

«Broker»

Hub

«DataFlow»

«System»

Invoice

«System»

Billing

«DataFlow»

«Broker»

Hub

«DataFlow»

«System»

Invoice

«System»

Billing

«Broker»

Hub

«JdbcAdapter»

AInvoice

«ErpAdapter»

ABill

«Queue»

InvToHub

«Queue»

HubToBill

«MessageFlow» «MessageFlow»

«JdbcQuery» «API»

«System»

Invoice

«System»

Billing

«Broker»

Hub

«JdbcAdapter»

AInvoice

«ErpAdapter»

ABill

«Queue»

InvToHub

«Queue»

HubToBill

«MessageFlow» «MessageFlow»

«JdbcQuery» «API»

346 Hans-Peter Steiert

3.2 An Example

Let's walk through the process proposed by RADES and discuss a simplified example:
The first activity is to define the goal of an integration project and results in a workflow
or integration scenario description. In Fig. 5, we used an UML class diagram for mod-
elling the scenario. Note that we utilize the UML extension mechanisms and have de-
fined some stereotypes as for example “System”. Those will help tools to recognize
which semantic a class in our diagram has w.r.t. the RADES approach. There exists al-
ready a “UML Profile for EAI” [27] but we did not use it here for simplicity reasons. In
the RADES approach this diagram is stored within the central repository.

Next, from a library of architectural integration pattern one is chosen that does fit
best to the needs of the scenario. The library contains several architectural integration
patterns and describes how and when those should be applied. For example the devel-
oper may choose “Hub-and-Spoke” to implement the data exchange in our example.
This means that the simple arc with stereotype “DataFlow” is replaced by a hub-and-
spoke pattern. Note that this example is simplified. In a real model additional model el-
ements are required which describe the kind of data to be exchanged, necessary trans-
formations done by the broker and so on. The result of this phase is a class diagram de-
scribing the participants of this architectural pattern in the context of the integration sce-
nario. This is the platform specific model and it is stored in the repository which does
also track transformations that have been applied. We will need this information later if
we discuss the bottom-up approach. RADES will take advantage of several approaches
for transforming UML diagrams automatically [29].

Now a product is chosen for implementing this pattern. For each architectural pat-
tern the repository manages implementation patterns on the base of commercial prod-
ucts. The platform specific model is refined by applying an implementation pattern to
the hub-and-spoke architecture. In our example each communication link between an
application systems and the broker is replaced by an adapter with communication links
to the application system and to the broker. Because the properties of the application
system are also stored within the repository development tools can check whether or not
the adapter is well suited for the application system. In our case the adapter communi-
cates with the application system through a JDBC connection and with the broker
through a messaging system. Therefore, message queues are also added to the model.
The result is a product specific model (PM).

The PM contains all information necessary to create install scripts, configuration
scripts, queue definitions, adapter configuration files and so on. The user still has to pro-
vide logical names for the instances of each model element to the generator. Hence, the
result is still environment independent, e.g., it does not contain physical IP addresses
but logical names. If the resulting package is deployed to a concrete environment, then
the deployment tool replaces logical names by physical ones. Appropriate information
about the environment and the mapping has to be provided by the developer/deployer.
Of cause all this information is also managed by the repository.

So far we did describe the top down process. Because of the layers of abstraction
the RADES approach is also well suited to support a bottom-up approach. This is re-
quired in order to support the maintenance scenario. Assume, a queue name is changed

Data Managment for Engineering Applications 347

by an administrator. Utilizing the information about the environment and the PM a
check utility may detect that a queue mentioned in the repository does not longer exist
and triggers an administrator to update the model. After the information about the phys-
ical implementation has been updated, the tool can also check if the change made by the
administrator is still consistent with the model at the higher level. For example, renam-
ing a queue will only affect the lowest level because the logical name is still valid. But
using two queues between adapter and broker will require changes up to the product
specific model.

4 Data Flow in Engineering Processes

As engineering becomes more and more complex not all tasks are done within the en-
terprise itself. The special know how of external firms is exploited, too. This results in
engineering processes which are partly executed by partners. Managing such processes
means to cope with the interdependencies between internal and external engineering
processes and the data flow in between. Typically this is what workflow management
systems have been developed for.

Traditionally, workflow management systems were intended to be used for auto-
mating business processes within the same company. Compared to business processes,
engineering processes are different in many aspects. First of all, engineering processes
are long running tasks. Constructing a car lasts for many years and the next model of a
large airliner is the result of a decade of engineering and production planning. Second,
engineering processes have to cope with uncertainty because of their mixture of creative
work, collaborative tasks and repeating activities. This results in more complex proc-
esses with many alternative paths and sections that can not be planed in advanced [3].
Third, engineering data is different from business data. While business applications
have to cope with a large number of simple structured data items engineering processes
manage large and complex structured data items but the number is comparative small.
Several proposals have been made to take advantage of workflow management in the
engineering domain [3, 30, 17].

Data management is one of the crucial issues in engineering processes. For example
the CONCORD approach [30] is a database-oriented processing model for design ap-
plications. It exploits the enhanced data management abilities of the underlying data
store VStore [24] which was especially developed for managing complex engineering
data. Another example is described in [3]. In this approach the focus is not on managing
the control flow between activities. The key idea is to manage data exchange depend-
encies instead of control flow between engineering activities. The author argues that en-
gineering processes are result driven, which means in the terms of IT that they are data
driven.

If it comes to cross-organizational workflows, data management becomes even
more challenging. For reasonable cooperation it is essential to share data between the
participating groups. As an example, consider engineers constructing a new automotive
vehicle. To examine the accuracy of the fittings a kind of digital mock up (DMU) may

348 Hans-Peter Steiert

be performed. This means at a given point of time all participants have to exchange the
CAD geometries in order to create a digital version of the whole vehicle. Even in large
companies a central data store is difficult to achieve. In the case of cross-organizational
cooperation it is in fact impossible.

In the COW project (cross-organizational workflows [19]) first research towards
the description of company-spanning processes and support of global flow of control
has been performed. Complementary the role of cross-organizational dataflow has been
investigated in the COD project [4, 5] at the University of Kaiserslautern in cooperation
with DaimlerChrysler Research and Technology. It is described in detail in [6].

4.1 The COD Approach

Company-spanning development processes take already place today and electronic data
exchange is also widespread used, so what is the problem?

First, even if collaboration between engineering partners already follows a strict
process with agreed deliverables at given points in time, this process is not enacted
through workflow technology. Either data flow occurs at given time intervals, e.g., eve-
ry night, or in an ad-hoc manner. Exchanging data every night results in many unnec-
essary data exchanges because an engineering task at the provider's side may not have
finished a new result and the old one has already been sent. Ad-hoc exchange depends
heavily on the competence and reliability of people involved. It is very error-prone and
often the exchange has to be done several times before reaching the expected result.
Hence, high efforts have to be spent to cope with mistakes made during this process.

Second, today's data exchange is usually point-to-point between two activities in
the process. Hence, no global view on the current location of data within the overall
process is possible. Where is the data? Who is the owner of the data? Who is allowed
to apply changes? Who should be informed about changes? These questions can only
be answered with high efforts for investigation. Therefore, many errors occur which
need to be avoided.

Third, no standardized procedure and technology is used for data exchange. Each
point-to-point exchange is developed with a per-project view and utilizes the technolo-
gy at hand. This makes maintenance difficult and does not allow sharing experience or
even reusing software between two data exchange projects.

For theses reasons, the goal of COD is to make the flow of data between partners
transparent, to increase control over data even after it has left the company and to enact
data flow through integration with workflow management.

Within the COD approach we meet those challenges by identifying typical data ex-
change pattern at the logical level. For this purpose four aspects of cross-organizational
data exchange and their interdependencies have been studied. The result is a set of im-
plementation-independent dataflow integration pattern. One of the advantages of pat-
terns is that their implementation does not vary too much from one instantiation in an
integration project to the next if the underlying integration architecture is the same. This
gives a high potential for reuse of code fragments and know-how.

Data Managment for Engineering Applications 349

Note that one constraint in our research was to use of-the-shelf software wherever
applicable. This stems from our goal to support real-world integration projects. For this
reason we have examined current enterprise application integration (EAI) technology
and how we can take advantage of it.

Before we will introduce the dataflow integration patterns we have to explain our
scenario. Afterwards we will discuss the aspects of integration patterns and our integra-
tion architecture. We will argue why it is suitable for implementing our patterns.

Fig. 7 shows a cross-organizational data flow. A data flow edge (the dotted-dashed
line) connects an activity of the source side's workflow with an activity at the target
side's workflow. Note that we assume special activities to be inserted into the local
workflow specification. Those represent the interaction of the WfMS with the COD
middleware. All other arcs and boxes will be explained later.

4.2 Dataflow Integration Pattern

The idea of patterns is to describe the invariant parts of a solution and how it can be
adapted to a given scenario for a particular specification of the variant parts. So, what
are the invariant parts in our case?

• Who is responsible for the data at either side?

• What will be the effect of data flow at both sides?

Fig. 7 Cross-organizational Data Flow

WfMS

PDM

Application

WfMS

PDM

Application

A

B

B

A

350 Hans-Peter Steiert

• Who will be the owner of the data?

• At which point in time does the data flow occur?
Before a data flow occurs some system has to be responsible for the application da-

ta. In our case this is either the product data management system (PDM), or the work-
flow management system (WfMS). In the first case we call the data to be DS-managed
in the later case it is called WfMS-managed, whereas DS stands for data source. The
same is valid at the receiver's side. If the next activity at the receiver's side does expect
the data to be provided by the WfMS then it is also WfMS-managed at this location. In
the other case, if the application related to the next activity expects the data to be stored
in the local PDM, then we call it also DS-managed. So, either the WfMS or the PDM is
responsible for the data at either side.

We distinguish two kinds of effect on the data as it flows from one company to the
other. From the sender's point of view the data may still reside on the sender's side af-
terwards or it may flow completely to the receiver, i.e., no copy of the data remains at
the sender's side. The first is called source-conserving and the later source-consump-
tive.

We can think of two possible modes to supply the cooperation data to the target,
materialized or referenced. Materialized means that the data is provided physically at
the target island for local access direct after the data flow has been performed. Because
we have to consider data from the CAx domain to be huge in size, unnecessary physical
transfers have to be avoided. Materialized data may be outdated before it is required or
may not be required at all. Therefore, the mode referenced transfers only a reference of
the data. If data is effectively required this reference is used by the COD middleware to
fetch the physical data on demand.

The next aspect is related to the semantics of the data flow. In cross-organizational
collaboration there is a difference between the owner of data and the possessor of data.
From the engineering processes' point of view the owner is responsible for validity and
consistency. If the owner hands the data over this does not necessarily imply the loss of
ownership. In fact, it is also possible to be the owner of data even if there is no physical
copy accessible to the owner. The possessor always has a physical copy of the data but
has only limited rights on it. Tab. 1 shows the possible effects of switching ownership
and possession.

Last but not least the receiver may expect an other data format as it is available at
the sender's side. Therefore, selecting, filtering and transforming data has to be done.
This needs to be considered by the dataflow integration pattern.

Data Managment for Engineering Applications 351

Tab. 1 Relationship between Ownership and Possession

The aspects introduced above are not orthogonal. For example the possessor always
holds a physical copy of the data. Hence, if the source side is intended to be still a pos-
sessor after the data flow occurred than the transfer can not be source-consuming. Tab.
2 shows the useful combinations for which integration pattern need to be provided.

Tab. 2 Useful Combinations of the Integration Pattern Invariants

Before After

Source Target Source Target

A O,P - O,P P

B O,P - P O,P

C O,P - O,P O,P

D O,P - O P

E O,P - - O,P

F P O - O,P

G P O P O,P

Source-
Side

Manager

Supply
Mode Effect

Target-
Side

Manager

Ownership/
Possession
Category

DS materialized Source Conserving DS A, B, C, G

referenced Source Consumpting DS D, E, F

Source Conserving WfMS A, B, C, G

Source Consumpting WfMS D, E, F

WfMS materialized Source Conserving DS A, B, C, G

Source Consumpting DS D, E, F

Source Conserving WfMS A, B, C, G

Source Consumpting WfMS D, E, F

352 Hans-Peter Steiert

4.3 A COD Middleware Architecture

During the e-Hype it was usual to start from scratch and build new applications or mid-
dleware systems for each use case. Since then, cost cuts have hit most IT departments
and reducing costs has become one of the core drivers. That's why so called Service-
Oriented Architectures (SOA) [14] are en vogue. The idea is to build new systems
through aggregation of services provided by existing ones and to glue those together
with flow-oriented orchestration [13]. Services are made accessible through Web Serv-
ices technologies which are based upon open standards [36, 7] and promise high inter-
operability. For the same reasons and in order to ensure applicability in practice, one
design goal of the COD project was to utilize existing technologies as far as possible.
What are the requirements a middleware system supporting the COD approach has to
fulfil?

1. In our scenario each data exchange is triggered by a local WfMS through an ex-
change activity in the local workflow definition. At both sides different workflow
products may be in use. Hence, the middleware has to support easy integration
with heterogeneous WfMSs.

2. The data to be exchanged may stem from multiple data sources; i.e., the local
WfMS or one of the local PDM systems. At the receiver's side the same alterna-
tives exist. Hence, the COD middleware has to be able to work with heterogene-
ous data sources and application systems.

3. Data exchange between companies is a typical B2B scenario. Beside heterogene-
ity of applications and data sources the COD middleware has to support several
communication mechanisms and data exchange protocols in order to be able to
bridge between heterogeneous islands.

4. As data flows between the heterogeneous applications of different companies the
data format used on both sides will probably not be the same. Therefore, data
transformation has to be applied on the data's way from the source to the target.
The data exchange middleware has to support powerful data transformation and
filtering mechanisms for this purpose.

5. One reason for using a central middleware for data exchange instead of a per-
project solution is to be able to track the flow of data. The COD middleware has
to support tracking the data flow. Either this has to be a functionality of the mid-
dleware itself or the middleware must enable integration of a special software
component for this purpose.

6. Some of the properties of data objects exchanged between companies, as for ex-
ample ownership of data, will not be supported by off-the-shelf products because
those properties are application specific. Managing these properties will require
custom software components. The COD middleware has to be able to integrate
with such components.

As those requirements show, most of the demands are related to integration of het-
erogeneous systems, i.e., applications, data stores, WfMS, communication middleware
and self-developed components. This is a typical application scenario, message brokers
have been developed for [14].

Data Managment for Engineering Applications 353

In [16] several architectures for using message brokers are discussed. We will de-
scribe here the one introduced in [5]. In [6] it is classified as 'distributed approach' be-
cause it assumes message brokers at both sides. Note that there is no reason for using
the same message broker by both companies. The sender may have IBM's Websphere
Business Integration Server [16] in productive use and the receiver may use Microsoft's
BizTalk [20], for example. We will now describe the architecture as it is shown in
Fig. 7.

The core component is the central message broker. For simplicity reasons we only
describe the sender's side because the receiver's side looks exactly the same. The mes-
sage broker is connected through adapters with the other software components, i.e., the
WfMS, local application systems, local PDMSs and custom components for managing
ownership or tracking data flow or similar.

The purpose of adapters is to hide the heterogeneity of the systems connected to the
broker. Assume we use WebSphere MQ Workflow (MQWF) for workflow enactment.
If a dataflow activity is started by MQWF it will put a message into a WebSphere MQ
(WMQ) queue. This queue is intended to trigger an application system to perform the
activity. In our case this application system will be the message broker, e.g., SAP XI
[31] which uses HTTP for internal communication. Hence, the first purpose for the
adapter is to receive the message from WMQ and forward it to the broker through an
HTTP call. Unfortunately, SAP XI will not be able to understand the meaning of the

Fig. 8 Cross-organizational Data Flow

O
w

n
e

rs
h

ip
/

P
o
s
e

s
s
io

n
-

M
a

n
g

e
m

e
n

t

O
w

n
e

rs
h

ip
/

P
o

s
e
s
s
io

n
-

M
a

n
g
e

m
e

n
t

x
x
x

x
x
x

x
x
x

x
x
x

O
w

n
e

rs
h

ip
/

P
o
s
e
s
s
io

n
-

M
a
n

g
e

m
e
n

t

O
w

n
e

rs
h

ip
/

P
o

s
e

s
s
io

n
-

M
a

n
g
e

m
e
n

t

x
x
x

x
x
x

x
x
x

x
x
x

Adapter

EAI

Broker

EAI

Broker

Integration

Pattern
EAI

Broker

EAI

Broker

PDM
1

PDM
2

WfMS
1

WfMS
2

DS
1

DS
2

COD Middleware

Integration

Pattern

354 Hans-Peter Steiert

message because it is in the internal format of MQWF. Therefore, the adapter will trans-
form the incoming message from MQWF's internal XML format to the broker's SOAP-
based format [35]. As a result, the SAP XI broker will not be aware of which product is
used as WfMS. From the brokers point of view any WfMS will use the same message
in order to trigger a data exchange. The same is true for any interaction of the broker
with components of the local environment and even for communication with the other
side's broker, because both brokers are coupled through adapters, too.

Within the broker an implementation of one of our data exchange integration pat-
tern is started. Most brokers support some kind of process description for defining the
orchestration of multiple applications. This mechanism can be used to implement our
data exchange pattern as a kind of data exchange coding templates.

5 Conclusions

In this paper we discussed integration of engineering applications because it is currently
one of the most important topics in engineering data management. While integration
technology for business applications is broadly available support for the engineering
domain is still low. Because there exists no “silver bullet of application integration”,
several toolsets have been developed, each of which does provide mechanisms for the
integration at a given layer from databases up to the user interfaces. In section 2, we dis-
cussed the pros and cons of those tools in the context of engineering applications. Al-
though all of them can be applied successfully in engineering, too, special demands of
this domain are not supported.

In the remainder of the paper, we had a closer look on two topics which are current-
ly under our observation. First, we introduced an approach for developing integrated ap-
plications without loosing agility. The RADES approach proposes a model-based top-
down development model. Through extensive usage of a central repository many devel-
opment and maintenance task can be automated which enables faster adoptions to new
needs. Second, we presented an approach for managing cross-organizational data flows.
The idea was to provide a standard integration architecture for all kinds of data flows
between enterprises and a box of so-called integration pattern which provide pre-build
solutions to this problem. Note that the idea of integration patterns fits very well into
the RADES approach.

Future research has to be done for both approaches in order to make them applicable
in real-world integration scenarios in the domain of engineering.

References

[1] Audi: Engineering Portal Audi Quickreferenz. available from https://extranet.audi.de/
QuickReferenz_V08.pdf, access 2005-01-05

[2] Bernstein, P. A., Dayal, U.: An Overview of Repository Technology, in Proc. 20th Int.
Conf. Very Large Data Bases, 1994, Santiago de Chile, Morgan Kaufmann, pp. 705-713

Data Managment for Engineering Applications 355

[3] Beuter, T.: Workflow-Management für Produktentwicklungsprozesse. Der Andere Verlag,
Wissenschaftlicher Buchverlag, http://www.der-andere-verlag.de/bookshop/de-
fault.html?fachgebiet_rechts-_und_wirtschaftswissenschaften.htm.

[4] Bon, M., Ritter, N., Härder, T.: Sharing Product Data among Heterogeneous Workflow
Environments, in Proc. Int. Conf. CAD 2002—Corporate Engineering Research, Dresden,
March 2002, pp. 139-149.

[5] Bon, M., Ritter, N., Steiert, H.-P.: Modellierung und Abwicklung von Datenflüssen in un-
ternehmensübergreifenden Prozessen, in: Proc. 10. GI-Fachtagung für Datenbanksysteme
in Business, Technologie und Web, Leipzig, March 2003, pp. 433-442.

[6] Bon, M.: Modellierung und Abwicklung von Datenflüssen in unternehmensübergreifend-
en Geschäftsprozessen, Logos Verlag Berlin, 2004.

[7] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1, W3C Note 15 March 2001

[8] Clark, J. (ed.): XSL Transformations (XSLT), Version 1.0. W3C Recommendation 16 No-
vember 1999

[9] Dorda, C., Steiert, H.-P., Sellentin, J.: Modellbasierter Ansatz zur Anwendungsintegration.
it – Information Technology 46(4): pp. 200-210 (2004).

[10] Encarnaçao, J., Lockemann, P. (eds): Engineering Databases, Connecting Islands of Auto-
mation Trough Databases. Springer Verlag, 1990

[11] Häuschen, H.: EAI—Enterprise Application Integration. available from http://www.ifi.un-
izh.ch/ikm/Vorlesungen/ebusiness/ws04/material/FolienEAI.pdf, access 2005-01-06

[12] Hilliger von Thile, A., Melzer, I.: Smart Files: Combining the Advantages of DBMS and
WfMS with the Simplicity and Flexibility of Spreadsheets, in Proc. 11. GI-Fachtagung für
Datenbanksysteme in Business, Technologie und Web, Karlsruhe, March 2005.

[13] IBM: Business Process Execution Language for Web Services, Version 1.1. available from
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, BEA Systems,
IBM Corporation, Microsoft Corporation, SAP AG, Siebel Systems, 2003

[14] IBM: Patterns: Implementing an SOA Using an Enterprise Service Bus. IBM International
Technical Support Organization, July 2004

[15] IBM: Patterns: An EAI Solution using WebSphere Business Integration (V4.1). IBM In-
ternational Technical Support Organization, July 2003

[16] IBM: WebSphere Business Integration Server, Product Information, available at http://
www-306.ibm.com/software/integration/wbiserver/

[17] Jordan, J., Kleinhans, U., Kulendik, O., Porscha, J., Pross, A., Siebert, R.: Transparent and
Flexible Cross-Organizational Workflows for Engineering Cooperations in Vehicle De-
velopment, in: PDT Europe 2002, Torino, Italy: Quality Marketing Services, Sandhurst,
UK, May 7, 2002, pp. 101-108.

[18] Käfer, W.: Geschichts- und Versionierungsmodellierung komplexer Objekte. Dissertation,
TU Kaiserslautern, 1992

[19] Kulendik, O., Rothermel, K., Siebert, R.: Cross-organizational Workflow Management:
General approaches and their suitability for Engineering Processes, in: Proc. First IFIP
Conference on e-Commerce, e-Business, e-Government. Zürich, Schweiz, Oktober 2001.

[20] Microsoft: Microsoft Biztalk Server 2004, Product Information, available at http://
www.microsoft.com/biztalk/

[21] Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1., Object Management Group,
Document Number: omg/2003-06-01, 2003

356 Hans-Peter Steiert

[22] Möckel, S.: EAI-Überblick und Basistechnologien des EAI, available from http://ais.infor-
matik.uni-leipzig.de/download/2002s_s_ieb/SilvioMoeckel_EAI.pdf, access 2005-01-06

[23] Nink, U.: Anbindung von Entwurfsdatenbanken an objektorientierte Program-
miersprachen. Dissertation, TU Kaiserslautern, Shaker-Verlag, Aachen, 1999

[24] Nink, U., Ritter, N.: Database Application Programming with Versioned Complex Ob-
jects, in: Proc. 7. GI-Fachtagung 'Datenbanksysteme in Büro, Technik und Wissenschaft',
K.R. Dittrich, A. Geppert (Hrsg.), Informatik aktuell, Ulm, März 1997, Springer-Verlag,
pp. 172-191.

[25] OMG: UML 2.0 Infrastructure Specification—OMG Adopted Specification. Object Man-
agement Group, Document Number: ptc/03-09-15, 2003

[26] OMG: UML 2.0 Superstructure Specification—OMG Adopted Specification. Object
Management Group, Document Number: ptc/03-08-02, 2003

[27] OMG: UMLTM Profile and Interchange Models for Enterprise Application Integration
(EAI) Specification—OMG Formal Specification. Object Management Group, Document
Number: formal/04-03-26, March 2004

[28] Özsu, M.T., Valduriez, P.: Distributed Data Management: Unsolved Problems and New Is-
sues, in Casavant, T. L., Singhal, M. (eds): Readings in Distributed Computing Systems.
IEEE Press, 1994

[29] Peltier, M., Bezivin, J., Guillaume, G.: MTRANS: A general framework, based on XSLT
for model transformations, in: Proc. Workshop on Transformations in UML
(WTUML'01), Genova, Italy, Apr. 2001.

[30] Ritter, N.: DB-gestützte Kooperationsdienste für technische Entwurfsanwendungen,. DIS-
DBIS 33, Infix-Verlag, 1997.

[31] SAP Help Portal. accessible through http://help.sap.com/.
[32] Sauter, G.: Interoperabilität von Datenbanksystemen bei struktureller Heterogenität – Ar-

chitektur, Beschreibungs- und Ausführungsmodell zur Unterstützung der Integration und
Migration. DISDBIS 47, infix-Verlag, 1998.

[33] Sun Microsystems: Java 2 Platform Enterprise Edition Specification, v1.4. Sun Microsys-
tems, Inc., 2003

[34] Sun Microsystems: J2EE Connector Architecture Specification, Version: 1.5, Release:
November 24, 2003. Sun Microsystems, Inc., 2003

[35] W3C: SOAP Version 1.2—W3C Recommendation 24 June 2003. available from http://
www.w3.org/2002/ws/, access 2005-01-05

[36] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. (eds.): Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 4th February 2004

List of Authors

• Altinel, Mehmet
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1916
EMail: maltinel@us.ibm.com

• Brown, Paul
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1463
EMail: pbrown1@us.ibm.com

• Bussler, Christoph
National University of Ireland
Digital Enterprise Research Institute (DERI)
University Road; Galway; Ireland
Phone: +353-91-512603
E-Mail: chris.bussler@deri.org / chbussler@aol.com

• Doraiswamy, Sangeeta
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1824
EMail: dsang@us.ibm.com

• Grossmann, Matthias
Universität Stuttgart
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universitätsstr. 38; 70569 Stuttgart; Germany
Phone: +49-711-7816-402
E-Mail: grossmms@informatik.uni-stuttgart.de

• Haas, Peter
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1702
EMail: phaas@us.ibm.com

358 List of Authors

• Härder, Theo
Technische Universität Kaiserslautern
Fachgebiet Informatik / Lehrgebiet Informationssysteme
Arbeitsgruppe Datenbanken und Informationssysteme;
67653 Kaiserslautern; Germany
Phone: +49-631-205-4030
E-Mail: haerder@informatik.uni-kl.de

• Henrich, Andreas
Otto-Friedrich-Universität Bamberg
Fakultät für Wirtschaftsinformatik und Angewandte Informatik
Lehrstuhl für Medieninformatik
96045 Bamberg; Germany
Phone: +49-951-863-2850
E-Mail: andreas.henrich@wiai.uni-bamberg.de

• Hönle, Nicola
Universität Stuttgart
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universitätsstr. 38; 70569 Stuttgart; Germany
Phone: +49-711-7816-232
E-Mail: hoenlena@informatik.uni-stuttgart.de

• Jablonski, Stefan
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Martensstr. 3; 91058 Erlangen; Germany
Phone: +49-9131-85-27885
E-Mail: jablonski@informatik.uni-erlangen.de

• Kirsche, Thomas
GfK Marketing Service GmbH & Co. KG
Nordwestring 101; 90319 Nürnberg; Germany
Phone: +49-911-395-2918
E-Mail: thomas.kirsche@gfk.de

• Lehner, Wolfgang
Technische Universität Dresden
Fakultät Informatik / Lehrstuhl Datenbanken
01062 Dresden; Germany
Phone: +49-351-463-38383
EMail: lehner@inf.tu-dresden.de

• Lenz, Richard
Philipps-Universität Marburg
Institut für Medizinische Informatik
Bunsenstr. 3; 35037 Marburg; Germany
Phone: +49-6421-28-66298
EMail: lenzr@mailer.uni-marburg.de

List of Authors 359

• Mandl, Stefan
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Am Weichselgarten 9; 91058 Erlangen-Tennenlohe; Germany
Phone: +49-9131-85-29913
E-Mail: mandl@informatik.uni-erlangen.de

• Meyer-Wegener, Klaus
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Martensstr. 3; 91058 Erlangen; Germany
Phone: +49-9131-85-27892
EMail: kmw@informatik.uni-erlangen.de

• Mitschang, Bernhard
Universität Stuttgart
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universitätsstr. 38; 70569 Stuttgart; Germany
Phone: +49-711-7816-449
E-Mail: bernhard.mitschang@informatik.uni-stuttgart.de

• Mohan, C.
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1733
EMail: mohan@almaden.ibm.com

• Myllymaki, Jussi
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1723
EMail: jussi@us.ibm.com

• Nicklas, Daniela
Universität Stuttgart
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universitätsstr. 38; 70569 Stuttgart; Germany
Phone: +49-711-7816-217
E-Mail: danickla@informatik.uni-stuttgart.de

• Ortner, Erich
Technische Universität Darmstadt
Fachgebiet Wirtschaftsinformatik I
Hochschulstraße 1; 64289 Darmstadt; Germany
Phone: +49-6151-16-4309
E-Mail: ortner@winf.tu-darmstadt.de

360 List of Authors

• Palmer, Stewart
IBM T.J. Watson Research Center
19 Skyline Drive; Hawthorne, NY 10532; USA
Phone: +1-914-784-7171
E-Mail: slp@us.ibm.com

• Parr, Francis
IBM T.J. Watson Research Center
19 Skyline Drive; Hawthorne, NY 10532; USA
Phone: +1-914-784-7145
E-Mail: fnparr@us.ibm.com

• Peinl, Peter
Fachhochschule Fulda
Fachbereich Angewandte Informatik
Marquardstraße 35; 36039 Fulda; Germany
Phone: +49-661-9640-381
E-Mail: peter.peinl@informatik.fh-fulda.de

• Pirahesh, Hamid
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1754
EMail: pirahesh@almaden.ibm.com

• Reinwald, Berthold
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-2208
EMail: reinwald@almaden.ibm.com

• Reuter, Andreas
European Media Laboratory GmbH
Schloss-Wolfsbrunnenweg 33; 69118 Heidelberg; Germany
Phone: +49-6221-533200
E-Mail: Andreas.Reuter@villa-bosch.de

• Ruf, Thomas
GfK Marketing Service GmbH & Co. KG
Nordwestring 101; 90319 Nürnberg; Germany
Phone: +49-911-395-4164
E-Mail: thomas.ruf@gfk.de

• Schmidt, Sebastian
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Am Weichselgarten 9; 91058 Erlangen-Tennenlohe; Germany
Phone: +49-9131-85-29911
E-Mail: sebastian.schmidt@informatik.uni-erlangen.de

List of Authors 361

• Schuster, Hans
Consileon Business Consultancy GmbH
Zähringerstr. 84; 76133 Karlsruhe; Germany
Phone: +49-721-3546080
E-Mail: hans.schuster@consileon.de

• Schwarz, Thomas
Universität Stuttgart
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universitätsstr. 38; 70569 Stuttgart; Germany
Phone: +49-711-7816-217
E-Mail: schwarts@informatik.uni-stuttgart.de

• Shrinivas, Lakshmikant
University of Wisconsin-Madison
1402 Regent Street #730
Madison, WI 53711; USA
Phone: +1-608-628-2871
E-Mail: lshrinivas@wisc.edu

• Sismanis, Yannis
IBM Almaden Research Center
650 Harry Road; San Jose, CA 95120-6099; USA
Phone: +1-408-927-1714
EMail: syannis@us.ibm.com

• Steiert, Hans-Peter
DaimlerChrysler AG, Research and Technology
Data and Process Management 096/U800 - RIC/ED
Postfach 2360; 89013 Ulm; Germany
Phone: +49-731-505-2846
E-Mail: hans-peter.steiert@daimlerchrysler.com

• Steinbauer, Dieter
Schufa Holding AG
Hagenauer Straße 44; 65203 Wiesbaden; Germany
Phone: +49-611-9278-120
E-Mail: dieter.steinbauer@schufa.de

• Störl, Uta
Fachhochschule Darmstadt
Haardtring 100; 64295 Darmstadt; Germany
Phone: +49-6151-168424
E-Mail: stoerl@fbi.fh-darmstadt.de

• Stoyan, Herbert
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Am Weichselgarten 9; 91058 Erlangen-Tennenlohe; Germany
Phone: +49-9131-85-29906
E-Mail: hstoyan@informatik.uni-erlangen.de

362 List of Authors

• Vogel, Mario
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät / Institut für Informatik
Am Weichselgarten 9; 91058 Erlangen-Tennenlohe; Germany
Phone: +49-9131-85-29907
E-Mail: mario.vogel@informatik.uni-erlangen.de

Children – Grandchildren – Great-Grandchildren ...

Academic Children of Hartmut Wedekind
1. Heinz Kreuzberger: Verfahren zur Lösung ganzzahliger linearer Optimierung-

sprobleme (1969)
2. Joachim Petzold: Systemanalyse als Instrument zur Einsatzvorbereitung für

elektr. Datenverarbeitungsanlagen in Industriebetrieben (1970)
3. Rainer Bastian: Zeitberechnung peripherer Speicher (1972)
4. Bernd Osswald: Die Analyse des Leistungsvermögens einer elektronischen

Datenverarbeitungsanlage als Instrument zur Verbesserung der Betriebseigen-
schaften und der Anlagenauswahl (1972)

5. Hans Clüsserath: Einsatzmöglichkeiten operationsanalytischer Planungstech-
niken bei einer EDV-Unterstützten Auftragsabwicklung (1972)

6. Olaf Leue: Automatische Stundenplankonstruktion für Schulen mit kursorienti-
ertem Unterricht (1972)

7. Wolfgang Albrecht: Die Konstruktion von Binärzugriffsbäumen (1974)
8. Theo Härder: Das Zugriffszeitverhalten von Relationalen Datenbanksystemen

(1975)
9. Ernst-Ludwig Dittmann: Datenunabhängigkeit beim Entwurf von Datenbanksys-

temen (1977)
10. Waldemar Haag: Dokumentation von Anwendungssystemen aus der Sicht der

Benutzer (1981)
11. Erich Ortner: Aspekte einer Konstruktionssprache für den Datenbankentwurf

(1982)
12. Werner Eberlein: Architektur Technischer Datenbanken für Integrierte

Ingenieursysteme (1983)
13. Dieter Steinbauer: Transaktionen als Grundlage zur Strukturierung und Integ-

ritätssicherung in Datenbankanwendungssystemen (1983)
14. Klaus Kratzer: Komponenten der Datenverwaltung in der Büroorganisation

(1986)
15. Dieter Schön: Die Einbindung heterogener rechnergestützter Entwick-

lungssysteme in die Technische Dokumentation (1987)
16. Georg Zörntlein: Flexible Fertigungssysteme: Belegung, Steuerung, Datenorgan-

isation (1987)
17. Clemens Beckstein: Zur Logik der Logikprogrammierung – Ein konstruktiver

Ansatz (1988)

364 Children — Grandchildren — Great-Grandchildren...

18. Stefan Jablonski: Datenverwaltung in Verteilten Systemen – Grundlagen und
Lösungskonzepte (1989)

19. Ulf Schreier: Deduktive Datenbanken im Mehrbenutzerbetrieb (1989)
20. Peter Hofmann: Konzepte der Fehlerbehandlung in Flexiblen Fertigungssystemen

(1990)
21. Hans-Werner Nau: Die Rekonstruktion von Büroarbeiten als Grundlage für die

Büroautomation (1990)
22. Michael Tielemann: Zur Konstruktion technischer Objekte – Ein integrierender

Ansatz (1990)
23. Thomas Ruf: Flexible Integration rechnergestützter Produktionssysteme – Grund-

lagen und Lösungskonzepte (1991)
24. Martin Nagler: Objektorientierter Schemaentwurf – Konzepte und Realisierungen

(1992)
25. Berthold Reinwald: Workflow-Management in verteilten Systemen – Entwurf

und Betrieb geregelter arbeitsteiliger Anwendungssysteme (1993)
26. Claudia Sommer: MoKon – Ein Ansatz zur wissensbasierten Konfiguration von

Variantenerzeugnissen (1993)
27. Thomas Kirsche: Datenbankkonversationen – Unterstützung kooperativer

Gruppenarbeit aus datenorientierter Sicht (1994)
28. Horst Lührsen: Die Entwicklung von Datenbanken für das Produktmodell der

ISO-Norm STEP (1996)
29. Claus Schottmüller: Mehrparteien-Dateitransfer in kooperativen Anwendungen –

Dienst und Protokollarchitektur (1996)
30. Richard Lenz: Adaptive Datenreplikation in verteilten Systemen (1997)
31. Hans Schuster: Architektur verteilter Workflow-Management-Systeme (1997)
32. Wolfgang Lehner: Aggregatverarbeitung in multidimensionalen Datenbanksys-

temen (1998)
33. Norbert Lotter: System Integration in the Design Process of the Manufacturing

Industry based on OMG and ISO Standards (1998)
34. Michael Teschke: Datenkonsistenz in Data-Warehouse-Systemen (1999)
35. Jens Albrecht: Anfrageoptimierung in Data-Warehouse-Systemen auf Grundlage

des multidimensionalen Datenmodells (2001)
36. Holger Günzel: Darstellung von Veränderungen im multidimensionalen Daten-

modell (2001)
37. Andreas Bauer: Datenallokation und Anfrageoptimierung in verteilten, föderi-

erten Data-Warehouse-Systemen (2002)
38. Wolfgang Hümmer: Vertragsverhandlungen um konfigurierbare Produkte im

elektronischen Handel (2004)

Children — Grandchildren — Great-Grandchildren... 365

Academic Grandchildren Via Härder
1. Andreas Reuter: Fehlerbehandlung in Datenbanksystemen (1981)
2. Wolfgang Effelsberg: Systempufferverwaltung in Datenbanksystemen (1981)
3. Klaus Küspert: Fehlererkennung und Fehlerbehandlung in Speicherungsstruk-

turen von Datenbanksystemen (1985)
4. Klaus Meyer-Wegener: Transaktionssysteme – eine Untersuchung des Funktion-

sumfangs, der Realisierungsmöglichkeiten und des Leistungsverhaltens (1986)
5. Peter Peinl: Synchronisation in zentralisierten Datenbanksystemen –

Algorithmen, Realisierungsmöglichkeiten und quantitative Bewertung (1986)
6. Bernhard Mitschang: Ein Molekül-Atom-Datenmodell für Non-Standard-

Anwendungen – Anwendungsanalyse, Datenmodellentwurf, Implementierung
(1988)

7. Erhard Rahm: Synchronisation in Mehrrechner-Datenbanksystemen – Konzepte,
Realisierungsformen und quantitative Bewertung (1988)

8. Andrea Sikeler: Implementierungskonzepte für Non-Standard-Datenbank-
systeme verdeutlicht am Beispiel des DB-Kernsystems PRIMA (1989)

9. Nelson Mattos: An Approach to Knowledge Base Management – Requirements,
Knowledge Representation and Design Issues (1989)

10. Stefan Pappe: Datenbankzugriff in offenen Rechnernetzen (1990)
11. Weixia Yan: Auswertung rekursiver Anfragen in Deduktiven Datenbanksys-

temen – eine Untersuchung der Strategien, des Leistungsverhaltens und der
Realisierungsmöglichkeiten (1991)

12. Christoph Hübel: Ein Verarbeitungsmodell für datenbankgestützte Ingenieuran-
wendungen in einer arbeitsplatzrechnerorientierten Ablaufumgebung (1992)

13. Wolfgang Käfer: Geschichts- und Versionsmodellierung komplexer Objekte –
Anforderungen und Realisierungsmöglichkeiten am Beispiel des NDBS PRIMA
(1992)

14. Bernd Sutter: Ansätze zur Integration in technischen Entwurfsanwendungen –
angepaßte Modellierungswerkzeuge, durchgängige Entwurfsunterstützung,
datenorientierte Integration (1992)

15. Harald Schöning: Anfrageverarbeitung in Komplexobjekt-Datenbanksystemen
(1992)

16. Stefan Deßloch: Semantic Integrity in Advanced Database Management Systems
(1993)

17. Yangjun Chen: Processing of Recursive Rules in Knowledge-based Systems –
Algorithms and Performance Measurements for Handling Recursive Rules and
Negation information (1995)

18. Robert Marek: Parallele Anfrageausführung in Shared-Nothing-Datenbanksys-
temen – Architektur, Leistungsanalyse und -optimierung (1995)

366 Children — Grandchildren — Great-Grandchildren...

19. Joachim Reinert: Ein Regelsystem zur Integritätssicherung in aktiven relationalen
Datenbanksystemen (1996)

20. Joachim Thomas: An Approach to Query Processing in Advanced Database
Systems (1996)

21. Axel Herbst: Anwendungsorientiertes DB-Archivieren – Neue Konzepte zur
Archivierung von Daten in Datenbanksystemen (1996)

22. Fernando de Ferreira Rezende: Transaction Services for Knowledge Base
Management Systems – Modeling Aspects, Architectural Issues and Realization
Techniques (1997)

23. Norbert Ritter: DB-gestützte Kooperationsdienste für technische Entwurfsan-
wendungen (1997)

24. Michael Gesmann: Parallele Anfrageverarbeitung in Komplexobjekt-Datenbank-
systemen – Verarbeitungskonzepte, Realisierungsaspekte und Betriebsystemein-
bettung (1997)

25. Günter Sauter: Interoperabilität von Datenbanksystemen bei struktureller Hetero-
genität – Architektur, Beschreibungs- und Ausführungsmodell zur Unterstützung
der Integration und Migration (1998)

26. Udo Nink: Anbindung von Entwurfsdatenbanken an objektorientierte Program-
miersprachen (1999)

27. Angelo Brayner: Transaction Management in Multidatabase Systems (1999)
28. Nan Zhang: Supporting Semantically Rich Relationships in Extensible Object-

Relational Database Management Systems (2000)
29. Henrik Loeser: Einsatz objekt-relationaler Datenbanksysteme für Web-Informa-

tionssysteme (2000)
30. Hans-Peter Steiert: Aspekte der generativen Entwicklung von ORDBMS-

basierten Datenverwaltungsdiensten (2001)
31. Ulrich Marder: Multimedia-Metacomputing in Web-basierten multimedialen

Informationssystemen (2002)
32. Weiping Zhang: Supporting Object-Oriented Software Development by Object-

Relational Database Technology – A Performance Study (2002)
33. Klaudia Hergula: Daten- und Funktionsintegration durch Föderierte Datenbank-

systeme (2003)
34. Wolfgang Mahnke: Komponentenbasierter Schemaentwurf für objekt-relationale

Datenbankverwaltungssysteme (2004)
35. Markus Bon: Modellierung und Abwicklung von Datenflüssen in unternehmen-

sübergreifenden Geschäftsprozessen (2004)
36. Marcus Flehmig: Datenintegration über das Web mit SHARX – Datengetriebene,

XML-basierte Datenintegrationskonzepte und Systemarchitekturen in unterneh-
mensweiten Anwendungen (2005)

37. Jernej Kovse: Model-Driven Development of Versioning Systems (2005)

Children — Grandchildren — Great-Grandchildren... 367

Academic Grandchildren Via Petzold
1. Stefan Albers: Modellbasiertes Prototyping (1995)
2. Susanne Stahlinger: Metamodellierung als Instrument des Methodenvergleichs

(1996)

Academic Grandchildren Via Ortner
1. Thomas Hellmuth: Terminologiemanagement (1997)
2. Bruno Schienmann: Objektorientierter Fachentwurf (1997)
3. Bernd Britzelmaier: Informationsverarbeitungs-Controlling: ein datenorientierter

Ansatz (1998)
4. Frank Lehmann: Fachlicher Entwurf von Workflow-Management-Anwendungen

(1998)
5. Peter Schieber: Business Reengineering und strategische Informationsplanung

(1998)

Academic Grandchildren Via Jablonski
1. Christoph Bussler: Organisationsverwaltung in Workflow-Management-

Systemen (1997)
2. Karin Stein: Integration von Anwendungsprozessmodellierung und Workflow-

Management (1998)
3. Petra Heinl: Entwicklung und Einsatz eines Qualitätsmodells für Workflow-

Management-Anwendungen (1999)
4. Jens Neeb: Administration von Workflow-Management-Lösungen (2001)
5. Joachim Klausner: Planen und intelligentes Workflow-Management (2001)
6. Rolf Schamburger: Integrierte Betrachtung von Anwendungen und Systemen zur

verteilten Workflowbearbeitung (2001)
7. Stefan Horn: Die schemabasierte Modellierung und Steuerung von Projek-

tvorgängen (2003)
8. Luo Xiao: Information Extraction in Practical Applications Systems and

Techniques (2003)
9. Michael Schlundt: Historienverwaltung in Workflow-Management-Systemen

(2004)
10. Christian Meiler: Modellierung, Planung und Ausführung Klinischer Pfade

(2005)

Academic Grandchildren Via Beckstein
1. Klaus Meier: Neuronale Netze zur Steuerung von einbeinigen Bewegungssys-

temen (1999)
2. Joachim Klausner: Planen und intelligentes Workflow-Management (2001)

368 Children — Grandchildren — Great-Grandchildren...

Academic Grandchildren Via Lehner
1. Lutz Schlesinger: Qualitätsgetriebene Konstruktion globaler Sichten in Grid-

organisierten Datenbanksystemen (2004)

Academic Great-Grandchildren Via Härder – Reuter
1. Bernd Walter: Betriebssystemkonzepte für fortgeschrittene Informationssysteme

(Habilitation, 1985)
2. Cai Jian: Pufferverwaltung in verteilten Datenbanksystemen (1987)
3. Christos Garidis: Clustering-Konzepte für optimalen Zugriff auf große und daten-

bankresidente Wissensbasen (1990)
4. Norbert Duppel: Optimierung komplexer Datenbankanfragen auf einen Multipro-

zessorsystem am Beispiel einer Parallelen Deduktiven Datenbank (1991)
5. Shiqi Han: Testen in Verteilten Systemen (1991)
6. Christina Liebelt: Unterstützung des Entwurfs konsistenzerhaltender Daten-

bankanwendungen (1991)
7. Gerhard Schiele: Kontrollstrukturen zur Ablaufsteuerung massiv paralleler

Datenbankanwendungen in Multiprozessorsystemen (1991)
8. Hansjörg Zeller: Adaptive Hash-Join-Algorithmen (1991)
9. Jörg Röhrle: Ein regelbasierter Testgenerator für das Rapid-Prototyping von

Datenbankanwendungen (1994)
10. Andreas Winckler: Kontext-sensitive Lastbalancierung (1994)
11. Wolfgang Becker: Dynamische adaptive Lastbalancierung für große, heterogen

konkurrierende Anwendungen (1995)
12. Roger Günthör: Ein Basisdienst für die zuverlässige Abwicklung langdauernder

Aktivitäten (1996)
13. Helmut Wächter: Zuverlässige Abwicklung langlebiger und verteilter Anwend-

ungen auf Datenbanken (1996)
14. Bernhard Wörner: Implizite Darstellung von Parallelität auf der Ebene des

Programmiermodells (1996)
15. Ursula Thalheimer: Bearbeitungstransaktionen – Ein Konzept zur Integration

physischer Operationen in das Transaktionsmodell (1997)
16. Rainer Pollak: Auswirkungen verschiedener Informationsebenen auf die

Effizienz der dynamischen Lastbalancierung (1999)
17. Leonore Zink: Einbettung von Interpolationsfunktionen in die Datenbanksprache

SQL – Datenbankunterstützung für die Umweltforschung (2000)
18. Kerstin Schneider: The Reliable Execution of Workflows – Compensation-based

Failure and Exception Handling Mechanisms (2003)

Children — Grandchildren — Great-Grandchildren... 369

Academic 2nd Great-Grandchildren Via Härder – Reuter – Walter
1.. Günter Karjoth: Prozeßalgebra und Temporale Logik – angewandt zur Spezi-

fikation und Analyse von komplexen Protokollen (1987)
2. Thomas Ludwig: Database Support for Knowledge-Based Systems (1992)
3. Erich Gehlen: Optimierung der Anfrageauswertung in einem Deduktiven Daten-

banksystem (1992)
4. Albert Maier: Einbettung von Konzepthierarchien in ein deduktives Datenbank-

system (1992)
5. Michael Ley: Ein Datenbankkern zur Speicherung variabel strukturierter Feature-

Terme (1993)
6. Thomas Benzschawel: Implementierung einer effizienten Anfrageauswertung für

ein deduktives Datenbanksystem (1995)
7. Dirk Rüttgers: Anfrageoptimierung durch abstrakte Interpretation für ein deduk-

tives Datenbanksystem (1997)
8. Gerd Hoff: Ein Verfahren zur thematisch spezialisierten Suche im Web und seine

Realisierung im Prototypen HomePageSearch (2002)

Academic Great-Grandchildren Via Härder – Meyer-Wegener
1. Walter Krasser: Leistungsbewertung von Transaktionssystemen mit analytischen

Methoden unter besonderer Berücksichtigung des Synchronisationsmechanismus
in der Datenbank (1992)

2. Kai Bruns: Die Konfigurierung modular aufgebauter Datenbankbetriebssysteme
(1994)

3. Rolf Käckenhoff: Datenmodellierung in Multimedia-Systemen: multimediale
und symbolische Datenobjekte mit ihren Beziehungen (1995)

4. Tilo Hegel: Ein formal spezifiziertes objektorientiertes Datenmodell mit Anfrag-
esprache und algebraischer Optimierung (1995)

5. Christoph Baumgarten: Probabilistic Information Retrieval in a Distributed
Heterogeneous Environment (1999)

6. Wolfgang Schulze: Ein Workflow-Management-Dienst für ein verteiltes Objek-
tverwaltungssystem (1999)

7. Markus Böhm: Systematische Konstruktion von Workflow-Typen für Workflow-
Management-Anwendungen (1999)

8. Henrike Berthold: A Federal Multimedia Database System (2002)

Academic Great-Grandchildren Via Härder – Effelsberg
1. Udo Bär: OSI-Konformitätstests - Validierung und qualitative Bewertung (1993)
2. Erwin Mayer: Multicast-Synchronisationsprotokolle für kooperative Anwend-

ungen (1993)

370 Children — Grandchildren — Great-Grandchildren...

3. Bernd Hofmann: Generierung effizienter Protokollimplementierungen aus
ESTELLE-Spezifikationen (1993)

4. Bernd Lamparter: XMovie: Digitale Filmübertragung in Rechnernetzen (1994)
5. Thomas Meyer-Boudnik: Interaktive Multimedia-Präsentationen in offenen

Systemen – Entwurf und Implementierung einer Laufzeitumgebung zur Evalu-
ation und Verbesserung des zukünftigen Standards MHEG (1994)

6. Ralf Keller: Anwendungsprotokolle für Verteilte Multimedia-Systeme (1996)
7. Stefan Fischer: Formale Spezifikation und Implementierung von Hochleistung-

sprotokollen (1996)
8. Stephan Fischer: Indikatorenkombination zur Inhaltsanalyse digitaler Filme

(1997)
9. Wieland Holfelder: Aufzeichnung und Wiedergabe von Internet-Videokon-

ferenzen (1998)
10. Rainer Lienhart: Verfahren zum Vergleich von Videosequenzen und deren

Anwendungen (VisualGREP: Query by Video Sequence and its Applications)
(1998)

11. Silvia Pfeiffer: Information Retrieval aus digitalisierten Audiospuren von Filmen
(1999)

12. Werner Geyer: Das Digital Lecture Board – Konzeption, Design und Entwicklung
eines Whiteboards für synchrones Teleteaching (1999)

13. Martin Mauve: Distributed Interactive Media (2000)
14. Rüdiger Weis: Cryptographic Protocols and Algorithms for Distributed Multi-

media Systems (2000)
15. Christoph Kuhmünch: Videoskalierung und Integration interaktiver Elemente in

Teleteaching-Szenarien (2001
16. Volker Hilt: Netzwerkbasierte Aufzeichnung und Wiedergabe interaktiver

Medienströme (2001)
17. Claudia Schremmer: Multimedia Applications of the Wavelet Transform (2002)
18. Gerald Kühne: Motion-based Segmentation and Classification of Video Objects

(2002)
19. Jörg Widmer: Equation-Based Congestion Control for Unicast and Multicast Data

Streams (2003)
20. Robert Denda: Fairness in Computer Networks (2004)
21. Thomas Haenselmann: Signalanalyse-Verfahren zur Segmentierung von Multi-

mediadaten (2004)
22. Jürgen Vogel: Consistency Algorithms and Protocols for Distributed Interactive

Applications (2004)

Children — Grandchildren — Great-Grandchildren... 371

Academic Great-Grandchildren Via Härder – Mitschang
1. Harald Kosch: Exploiting Serialized Bushy Trees for Parallel Relational Query

Optimization (1997)
2. Michael Jaedicke: New Concepts for Parallel Object-Relational Query Processing

(1999)
3. Jürgen Sellentin: Konzepte und Techniken der Datenversorgung für komponen-

tenbasierte Informationssysteme (1999)
4. Friedemann Schwenkreis: Korrektheit und deren Durchsetzung im Umfeld

langdauernder Abläufe (2001)
5. Simonas Saltenis: Indexing Techniques for Continuously Evolving Phenomena

(2001)
6. Aiko Frank: Das ASCEND-Modell zur Unterstützung kooperativer Prozesse

(2002)
7. Holger Schwarz: Integration von Data Mining und Online Analytical Processing:

Eine Analyse von Datenschemata, Systemarchitekturen und Optimierungsstrat-
egien (2002)

8. Ralf Rantzau: Query Processing Concepts and Techniques to Support Business
Intelligence Applications (2004)

9. Marcello Mariucci: Design and Implementation of a Model-Driven Earth Obser-
vation Integration Framework (2004)

Academic Great-Grandchildren Via Härder – Küspert
1. Uta Störl: Backup und Recovery in Datenbanksystemen: Verfahren, Klassi-

fikation, Implementierung und Bewertung (1999)
2. Ralf Schaarschmidt: Konzept und Sprache für die Archivierung in Datenbanksys-

temen (1999)
3. Frank Hüsemann: Datenbankmigration – Methodik und Software-Unterstützung

(2002)

Academic Great-Grandchildren Via Härder – Rahm
1. Robert Müller: Event-oriented Dynamic Adaptation of Workflows: Model,

Architecture and Implementation (2002)
2. Sergej Melnikj: Generic Model Management (2004)

Academic 2nd Great-Grandchildren Via Härder – Effelsberg – Fischer
1. Ulrich Walther: Service Support for Virtual Groups in Mobile Environments

(2003)
2. Horst Hellbrück: Analytische und simulationsbasierte Verfahren zur Konnektiv-

itätsbestimmung und -verbesserung in Ad-hoc-Netzen (2004)

	Frontmatter
	MOTIVATION AND MODELING ISSUES
	Databases: The Integrative Force in Cyberspace
	Federating Location-Based Data Services
	An Agent-Based Approach to Correctness in Databases

	INFRASTRUCTURAL SERVICES
	Thirty Years of Server Technology --- From Transaction Processing to Web Services
	Caching over the Entire User-to-Data Path in the Internet
	Reweaving the Tapestry: Integrating Database and Messaging Systems in the Wake of New Middleware Technologies
	Data Management Support for Notification Services
	Search Support in Data Management Systems

	APPLICATION DESIGN
	Toward Automated Large-Scale Information Integration and Discovery
	Component-Based Application Architecture for Enterprise Information Systems
	Processes, Workflows, Web Service Flows: A Reconstruction
	Pros and Cons of Distributed Workflow Execution Algorithms
	Business-to-Business Integration Technology

	APPLICATION SCENARIOS
	Information Dissemination in Modern Banking Applications
	An Intermediate Information System Forms Mutual Trust
	Data Refinement in a Market Research Applications' Data Production Process
	Information Management in Distributed Healthcare Networks
	Data Managment for Engineering Applications

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

